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This dissertation studies a framework in support electric vehicle (EV) charging sta-
tion expansion and management decisions. In the first part of the dissertation, we present
mathematical model for designing and managing electric vehicle charging stations, consid-
ering both long-term planning decisions and short-term hourly operational decisions (e.g.,
number of batteries charged, discharged through Battery-to-Grid (B2G), stored, Vehicle-
to-Grid (V2G), renewable, grid power usage) over a pre-specified planning horizon and
under stochastic power demand. The model captures the non-linear load congestion effect
that increases exponentially as the electricity consumed by plugged-in EV's approaches the
capacity of the charging station and linearizes it. The study proposes a hybrid decomposi-
tion algorithm that utilizes a Sample Average Approximation and an enhanced Progressive
Hedging algorithm (PHA) inside a Constraint Generation algorithmic framework to effi-
ciently solve the proposed optimization model. A case study based on a road network of

Washington, D.C. is presented to visualize and validate the modeling results. Computa-
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tional experiments demonstrate the effectiveness of the proposed algorithm in solving the
problem in a practical amount of time. Finding of the study include that incorporating the
load congestion factor encourages the opening of large-sized charging stations, increases
the number of stored batteries, and that higher congestion costs call for a decrease in the
opening of new charging stations.

The second part of the dissertation is dedicated to investigate the performance of a
collaborative decision model to optimize electricity flow among commercial buildings,
electric vehicle charging stations, and power grid under power demand uncertainty. A
two-stage stochastic programming model is proposed to incorporate energy sharing and
collaborative decisions among network entities with the aim of overall energy network
cost minimization. We use San Francisco, California as a testing ground to visualize and
validate the modeling results. Computational experiments draw managerial insights into
how different key input parameters (e.g., grid power unavailability, power collaboration re-
striction) affect the overall energy network design and cost. Finally, a novel disruption pre-
vention model is proposed for designing and managing EV charging stations with respect
to both long-term planning and short-term operational decisions, over a pre-determined
planning horizon and under a stochastic power demand. Long-term planning decisions
determine the type, location, and time of established charging stations, while short-term
operational decisions manage power resource utilization. A non-linear term is introduced
into the model to prevent the evolution of excessive temperature on a power line under
stochastic exogenous factors such as outside temperature and air velocity. Since the re-

search problem is NP-hard, a Sample Average Approximation method enhanced with a
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Scenario Decomposition algorithm on the basis of Lagrangian Decomposition scheme is
proposed to obtain a good-quality solution within a reasonable computational time. As a
testing ground, the road network of Washington, D.C. is considered to visualize and val-
idate the modeling results. The results of the analysis provide a number of managerial
insights to help decision makers achieving a more reliable and cost-effective electricity

supply network.

Key words: Charging stations, electric vehicles, Vehicle-to-grid, renewable energy, constraint-
generation algorithm, sample average approximation, scenario decomposition algorithm,
rolling horizon heuristics
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CHAPTER I

INTRODUCTION

1.1 Introduction

As aresult of the growing concern over climate change and dependence on fossil fuels,
electric vehicles (EV) have gained considerable attention all over the world in the last few
decades. In it’s continuation, a tremendous EV sales increase is observed on U.S. market
in recent years i.e., approximately, 700% sales increase from 2011 to 2016 [55] where
nearly 82% sales increase only in December, 2016 over the same time period in 2015
[35]. Additionally, with a number of incentive policies proposed by both federal and state
government, it is anticipated that there will be approximately 2.7 million of EVs on the
U.S. road by 2020 [15]. Furthermore, it is expected that EV market share will hit 10%
by 2025 [56]. The large EV penetration will bring both challenges and opportunities for
the power grid (PG). Running these automobiles on electricity instead of gasoline shifts
energy requirements from gas pumps to the power grid. If the charging is unmanaged for
such a large number of EVs, the electricity grid can be affected negatively. To support
large-scale deployment of EVs and achieve efficient grid operation, there is a urgent need
to carefully design and manage electric vehicle charging stations to not only reduce overall

system cost, but also provide substantial environmental and social benefits.
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As the penetration of electric vehicle widens, the load on the power system is go-
ing to increase due to the expansion of the charging infrastructure. A recent study from
Washington State’s Department of Transportation reveals that a total of 228,725 kWh of
energy were supplied to charge electric cars between 2012 and 2015, which is equivalent
to displacing 22,397 gallons of gas [125]. Further, projections are made that the load from
electric vehicles in the state of Washington will reach around 107 MW by 2029 [24]. Bai
et al. [9] demonstrate the effect of daily load curve triggered by electric vehicle under
three different charging modes. In another study, Qian et al. [98] show how different
percentages of penetration of electric vehicles can add a significant increase to the power
consumption. From both studies it has been noticed that electric vehicle has direct impact
on the daily load curve. With more EVs in the market, their charging on different time
period of the day can add a large load in the electricity grid. This phenomena is generally
referred to as load congestion to the distributed energy sources which may arise due to var-
ious reasons, e.g., very high power consumption during peak hours, concentrated charging
of EVs, and excessive power generation from distributed energy sources. If the charging
stations are not expanded and managed properly, the resultant load congestion can bring
serious distress to the power grid, including directly damaging many key elements of our
distribution system such as distribution transformers, feeders, and many others. Moreover,
the excessive electricity flow causes line over heating, which in extreme case cause power
transmission line failure. To hedge against this projected growth, it may be required to up-
grade electric distribution systems, increase capacities, integrate other power sources (i.e.,

renewable energy sources, vehicle-to-grid, shared energy from commercial buildings), and

2
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introduce dynamic pricing options (i.e., encourage off-peak charging so that the growing
loads do not exacerbate peak demand).

This dissertation is divided into three sections. The contribution of each section is men-
tioned at the chapter corresponding to each section. In the first section (CHAPTER II), we
present a novel two-stage stochastic mixed-integer program that incorporates both long
term planning decisions and short-term hourly operational decisions to design and manage
electric vehicle charging station decisions under stochastic power demand while preventing
congestion from occurring. We consider a long-term charging station expansion planning
model that features size, location, and timing to open facilities and demand response with a
short-term hourly time resolution. The problem is challenging due to the NP-hard nature of
location design, uncertainties present in dynamic traffic demands, availability in renewable
energy sources, and many other issues which significantly impact hourly power manage-
ment (e.g., renewable, V2G, grid power usage) and battery charging, discharging, and
storage decisions in a charging station. We develop and implement a customized hybrid
decomposition algorithm that combines a Constraint Generation algorithm with a Sam-
ple Average Approximation algorithm and an enhanced Progressive Hedging algorithm.
We introduce a number of algorithmic improvements such as penalty parameter updating
techniques, local and global heuristics, and different variants of the rolling horizon heuris-
tic. We construct a real-world case study based on the road network of Washington, D.C.
to test the performance of the algorithms and reveal interesting managerial insights. The
outcome of this study provides a number of managerial insights on total system cost and

optimal system design such as the optimal expansion of charging stations, number of bat-

3
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teries charged, discharged, stored, vehicle-to-grid, renewable, grid power usage decisions
under different power demand variability levels and congestion prices. Such results can
effectively aid decision makers to investigate the impact of hourly demand management
capabilities of a charging station.

In the second section (CHAPTER III), we proposes a novel collaborative energy shar-
ing decision model to study energy sharing among a cluster of commercial buildings and
EV charging stations in concert with the PG. The research problem is formulated as a two-
stage stochastic mixed-integer linear programming (MILP) model and then solved using
an enhanced Sample Average Approximation (SAA) method. The efficiency of the SAA
method is enhanced by generating some problem specific valid inequalities. We demon-
strate the computational performance of our customized hybrid algorithm relative to its
generic version. We Construct a real-world case study to test the performance of the al-
gorithms and reveal interesting managerial insights. We use San Francisco, California as
a testing ground to visualize and validate the modeling results. The outcome of this study
provides a number of managerial insights, such as the impact of demand variability, grid
power disruption, power collaboration limit, and renewable energy cell sizes on overall
system performance, which can effectively aid decision makers to design a cost-efficient
collaborative system between multiple commercial buildings and EV charging stations.

In the third section (CHAPTER 1V) this dissertation we develop and solve a reliable
EV charging station planning and managing problem with explicit consideration of random
power demand. We model the condition of the line temperature due to the excessive flow

of electricity. We develop a novel reliable two-stage stochastic mixed-integer non-linear

4
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programming model that incorporates both long term planning decisions and short-term
hourly operational decisions to design and manage reliable electric vehicle charging sta-
tion decisions under stochastic power demand. We consider a reliable two-stage stochas-
tic program where in the first-stage we determine size, type and timing to open charging
stations based on stochastic demand, and in the second-stage we satisfy the charging sta-
tions demand and track the operations of demand response with a short-term hourly time
resolution. To linearize the model, we employ three linearization techniques based on Mc-
Cormick relaxation techniques (also known as McCormick envelopes). We propose and
implement a customized hybrid decomposition solution approach that combines a Sample
Average Approximation algorithm with an enhanced Scenario Decomposition Algorithm
to solve our proposed optimization model. The enhanced Scenario Decomposition Algo-
rithm incorporate different variants of the rolling horizon heuristic. We apply the proposed
model and algorithm to a realistic scale case study based on the road network of Washing-
ton, D.C. The outcome of this study provides a number of interesting managerial insights
on total system cost and optimal system design. The decision includes optimal reliable
EV charging station expansion, number of batteries charged, discharged, stored, vehicle-
to-grid, RES, grid power usage decision under stochastic power demand. These results can
effectively help decision makers to investigate the impact of hourly demand management

capabilities of a charging station.
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CHAPTER 11
MANAGING LOAD CONGESTION IN ELECTRIC VEHICLE CHARGING

STATIONS-A MULTI-PERIOD STOCHASTIC MODEL

2.1 Introduction

As aresult of the growing concern over climate change and dependence on fossil fuels,
electric vehicles (EV) have gained considerable attention all over the world in the last few
decades. In it’s continuation, we observe a tremendous EV sales increase on U.S. market in
recent years i.e., approximately, 700% sales increase from 2011 to 2016 (shown in Figure
2.1a) [55] where nearly 82% sales increase only in December, 2016 over the same time
period in 2015 (shown in Figure 2.1b) [35]. The increasing trend is motivated by a number
of initiatives that have been taken by the U.S. government, such as the EV Everywhere
Grand Challenge which aims to encourage the manufacture of EVs that are as affordable
and user friendly as internal combustion vehicles by 2022 [115]. Furthermore, recent de-
velopments in battery technologies and the immense on-going research efforts are striving
to alleviate the so called “range anxiety” issue for EV [84]. For instance, after a monumen-
tal advancement in lithium-ion batteries, Audi e-tron quattro is expected to hit the market
in 2018 with a range of more than 310 miles'. With this advancement in battery technolo-

gies and a number of incentive policies proposed by the government, it is expected that

! Available from: http://www.audi.com/en/innovation/quattro/quattro_IAA2015.
html
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there will be approximately 2.7 million EVs on the U.S. road by 2020 [15]. If the charging
is unmanaged for such a large number of EVs, the electricity grid can be affected nega-
tively. Furthermore, the proper design and establishment of charging station infrastructure
over time would improve the future use and support of EVs. These facts mandate an ur-
gent need to efficiently design and manage charging station to promote widespread use of
EVs. To achieve this goal, this study explores the major challenges associated with the es-
tablishment and expansion of an EV charging infrastructure and develops an optimization
framework that can be used by decision makers to better manage charging stations related

activities.

<104

18

[ —#— Total Us Etectric Venicle sales

2014
25,000 2015

r 1 W 2016
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5,000
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Electric vehicle sales

Electric vehicle sales

(a) (b)
Figure 2.1: U.S. EV sales by (a) year in between 2011-2016 [55] and (b) year and month

distribution in between 2014-2016 [35]

The transition from internal combustion vehicles to EVs is influenced by several non-
trivial factors. First, EVs have better fuel economy and lower fuel costs compared to

conventional vehicles. For instance, EV fuel costs around 2-3 cents per mile whereas con-

7

www.manaraa.com



ventional vehicles fuel costs approximately 13 cents per mile?. Second, the use of EVs
reduces the United States reliance on imported petroleum and eventually increases energy
security. These benefits make EVs an important segment of the U.S. automotive industry,
which as a whole accounts for more than 3% of U.S. GDP [66]. As the number of EVs
on the road increases, the number of charging stations and their capacities will need to be
expanded accordingly. A recent study from Washington States Department of Transporta-
tion reveals that between 2012 and 2015 a total of 228,725 kWh of energy was utilized for
charging electric cars, which is equivalent to displacing 22,397 gallons of gas [125]. In this
study, they determined that these charging stations had been used 25,888 times since they
were first opened in 2012. They anticipate that the EV load in the State of Washington will
reach around 107 MW of electricity energy by 2029 which is an 87% increase from their
current usage [24]. The increased use of EVs also increases electrical grid demand, which
may increase high-level emission from petroleum-based electrical generation instead of re-
ducing it. Due to the scarcity of fossil fuels and the negative consequences of using them,
renewable energy sources are required to be coupled with the power grid as an alterna-
tive clean source of electricity. Additionally, the idea of vehicle-2-grid (V2G) is employed
for reducing higher EVs charging effects to the grid. In V2G mode, the charging station
supplies power to the grid. However, the projected increase of EV usage and integration
of renewable energy sources along with V2G technology for EV charging presents oppor-
tunities as well as challenges. To hedge against this projected growth, power companies

may need to upgrade electric distribution systems, increase capacities, integrate renewable

2 Available from: http://www.fueleconomy.gov/feg/findacar.shtml
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energy sources, and introduce dynamic pricing options (i.e., encourage off-peak charging
so that the growing loads do not exacerbate peak demand).

The U.S. Energy Information Administration (EIA) reports that the power demand
varies significantly throughout the day (see Figure 2.2a) [118] where 10:0 A.M. to 8:0
P.M. are considered as peak hours of a regular day. The EIA further reports that replacing
the internal-combustion engine vehicles with EVs will add approximately 1,198 TWh of
electricity demand to the grid [119]. This number represents a nearly 29% increase in an-
nual electricity demand in the United States. Figure 2.2b shows the trend of alternative fuel
stations in the U.S. by fuel type from 1992 to 2016. Although 2016 experienced the largest
growth to support the growing EV population, it is not sufficient to meet the demand for
the projected growth of EVs. With more EVs in the market, their charging on different
time period of the day can add a large load in the electricity grid. This phenomena is gen-
erally referred to as “load congestion” to the distributed energy sources which may arise
due to various reasons, e.g., very high power consumption during peak hours, concentrated
charging of EVs, and excessive power generation from distributed energy sources. If the
charging stations are not expanded and managed properly, the resultant load congestion can
bring serious distress to the power grid, including directly damaging many key elements of
our distribution system such as distribution transformers, feeders, and many others.

Till now majority of the previous studies have focused on identifying the best locations
for refueling stations to maximize traffic flow under deterministic (e.g., [65], [23], [67])
and stochastic settings (e.g., [89], [74], [14], [52]). Further, these studies attempt to extend

the single time period flow-refueling location model (FRLM), introduced by Kuby and Lim
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Figure 2.2: U.S. (a) daily power demand curve [118] and (b) alternative fueling station by

fuel type [3]

[65] and later extended by Wang and Lin [124], and MirHassani and Ebrazi [79], to a multi-
period charging station location problem (e.g., Chung and Kwon [23] and Li et al. [67]) to
gradually expand EV charging stations over time. Although these extensions have practical
implications, the authors concentrate on charging station expansion decisions while little or
no attention is given towards short-term charging station operational decisions (e.g., hourly
management decisions). Further, the prior studies ignored the impact of load congestion to
the design and management of charging station expansion decisions.

One possible way to alleviate grid load is to integrate renewable energy with V2G
sources while planning for optimal charging schedules for the EVs. We observe a good
stream of literatures in this research direction. For instance, Zhang et al. [133] and Su
and Chow [110] develop a methodology to manage the charging load for a large number
of EVs. The authors consider the travel pattern of EVs and charging characteristics of

the EV batteries (e.g., initial state-of-charge (SoC), battery charging time) to determine
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an optimal charging schedule for the EVs. Liu et al. [68] introduce the concept of smart
charging patterns of EVs while considering coordination of wind energy, thermal units, and
V2G sources. Along the same line, Gan et al. [37] formulate the EV charging scheduling
problem as an optimal control problem, and propose a decentralized algorithm to solve the
problem. Guo et al. [44] plan for the operations of EV parking decks considering the avail-
ability of renewable energy sources. The authors develop a tool to decide hourly parking
fees and charging prices based upon the forecast values of the available renewable energy.
Later, Fathabadi [33] studies the different effects of incorporating V2G and renewable en-
ergy in a power network. The goal is to identify the best coordination that is effective in
sustaining the system while reducing the cost and loss of power production. Zhang et al.
[134] propose a scheduling model to minimize the mean waiting time for charging the EVs
at the charging stations equipped with multiple plug outlets and availability of renewable
energy sources. Haddadian et al. [46] consider the effects of incorporating V2G and re-
newable energy as viable sources for the smart grid. The authors further developed in [45]
a mixed-integer linear programming (MILP) model to optimize the hourly scheduling of
electricity where several key components of the model are considered as hourly load, en-
ergy, and outages are generated using a Monte-Carlo simulation. Most of existing studies
along this line attempt to manage load congestion for a single facility while little or no
attention is given to its impact on the charging station expansion decisions.

Another stream of research in the literature focuses on the application of battery swap
stations where EVs can exchange their depleted, or nearly depleted, batteries with full

batteries for a fee. Pan et al. [89] develop a two-stage stochastic program that optimally
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locates EV battery swapping stations prior to the realization of battery demands, loads,
and generation capacity of renewable energies. Worley and Klabjan [129] present a dy-
namic programming model that determines the number of batteries to purchase and their
charging time based on dynamic changes in grid power fees. The authors only consider
the transportation system but do not consider V2G or the impact on the power grid. Mak
et al. [74] develop two robust optimization models based on incomplete information (e.g.,
adoption rate of EVs). The first model minimizes costs while the second model maximizes
a pre-specified amount of profit associated with optimizing the infrastructure planning for
battery swap stations. Two important features of the models are their consideration of the
capacity limits at the swapping stations and demand uncertainty. Another study by Zheng
et al. [135] develop a framework for optimal design of battery charging/swap stations in
distribution systems based on life cycle cost (LCC). Liu et al. [70] propose an optimization
model to determine the energy exchange strategies of a battery swap station considering
solar energy availability. The authors extend their prior work in [71] to determine the loca-
tion and capacity of battery swap stations while considering energy demand management
decisions (e.g., optimal pricing, number of batteries to charge and discharge). In another
study, Avci et al. [8] examine switch stations in comparison to charging stations and con-
clude that switch stations encourage the adoption of EVs. Both options have advantages
and disadvantages when compared to one another. Note that most of existing studies along
this line attempt to optimize battery management (e.g., hourly charging, discharging, stor-
ing) decisions within the facility while little or no attention is given to the charging station

expansion decisions.
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To the best of the authors’ knowledge, none of the prior studies have investigated the
impact of charging station load congestion from a random power demand viewpoint and
integrated both the long-term charging station planning decisions (e.g., size, location, and
year to open charging stations) and short-term hourly operational decisions (e.g., num-
ber of batteries charged, discharged, stored, use of vehicle-to-grid (V2G), renewable, grid
power usage) under the same decision making framework. Separate considerations of these
factors, as observed in the prior studies, may result in sub-optimal decisions or inaccu-
rate cost estimation. The integration of these factors is motivated by the real cases for
which a holistic network design might help developing policies and insights for the po-
tential grow of EVs in the market. To fill this gap in the literature, we have developed
a two-stage stochastic mixed-integer non-linear programming model that simultaneously
optimizes long-term planning decisions and short-term charging station management de-
cisions over a pre-specified planning horizon and under stochastic power demand while
preventing congestion from occurring. The problem is challenging due to the N P-hard
nature of location design, uncertainties present in dynamic traffic demands, availability in
renewable energy sources, and many other issues which significantly impact hourly power
management (e.g., renewable, V2G, grid power usage) and battery charging, discharging,
and storage decisions in a charging station. To solve this challenging problem, we propose
a highly customized hybrid decomposition algorithm that combines a Constraint Gener-
ation algorithm with a Sample Average Approximation algorithm and an enhanced Pro-
gressive Hedging algorithm. The enhanced Progressive Hedging algorithm incorporates

several algorithmic improvements such as variable fixing techniques, penalty parameter
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updating techniques, local and global heuristics, and different variants of the rolling hori-
zon heuristic. It has been verified through multiple experiments that the customized hybrid
decomposition algorithm is capable of generating high-quality solutions to large-size prob-
lem instances of our model, within a reasonable amount of time.

Besides proposing the general model, another important contribution of this paper is
applying this model to a real-world case study based on the road network of Washington,
D.C. The outcome of this study provides a number of managerial insights on total sys-
tem cost and optimal system design such as the optimal expansion of charging stations,
number of batteries charged, discharged, stored, vehicle-to-grid, renewable, grid power us-
age decisions under different power demand variability levels and congestion prices. Such
results can effectively aid decision makers to investigate the impact of hourly demand man-
agement capabilities of a charging station. Finally, we show how the average unit power
charging requirement of a car and the average unit power discharged from a car impact
system performance.

The remainder of this paper is organized as follows. Section 2.2 presents the two-stage
stochastic programming model formulation for optimal sizing and location of charging
stations considering power demand uncertainty. The hybrid solution approach to solve
our proposed optimization model is introduced in Section 2.3. Section 2.4 presents a se-
ries of numerical experiments to draw managerial insights and verify the algorithmic per-
formances. Lastly, Section 2.5 provides conclusions along with briefly discusses future

research directions.
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2.2 Problem Description and Model Formulation
This section presents a two-stage stochastic mixed-integer nonlinear programming

(MINLP) model that simultaneously addresses long-term electric vehicle charging station
expansion decisions (e.g., sizing, location, and timing decisions) and short-term hourly op-
erational decisions (e.g., number of batteries charged, discharged, stored, V2G, renewable,
grid power usage) over a pre-specified planning horizon and under power demand uncer-
tainty. Further, the model contains a nonlinear congestion cost function which arises due
to overloading the power system of a charging station during the peak charging hours. We
then present a modified formulation that linearizes the nonlinear congestion cost function

and allow us to solve the proposed optimization model in a reasonable amount of time.

2.2.1 Nonlinar Model Formulation

The problem under investigation divides a transportation network into a set of cells
Z = {1,2,...,1} where each cell can be considered as a candidate location to open a
charging station. These charging stations can be constructed over a set of time periods
T = {1,2,...,T} which is expressed in years. Locating a charging station of capacity
l € Latcelli € T in yeart € 7T entails a fixed opening cost ¥;;;. We assume that a
budget B, is available each year ¢t € T to open the stations. Let H = {1,2, ..., H} be the
set of hours, and we assume that the number of time-stages are predetermined with equal
length (for both hours and years). Let f;;; be the expected number of cars that will flow
into each cell 7 € Z in hour h € H of year t € 7. However, there is uncertainty about

what percentage of the cars require charging. Let 77, be the percentage of cars charging in
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hour h € H of year t € T under scenario w € €2 where €2 represents the set of scenarios of
different realization of electric vehicles and p,, is a probability of a particular realization.
We further denote \f,, as the average charge required by an EVincell ¢« € Z athour h € H
of year t € T (in kWh). Therefore, the realized power demand for each cell ¢ € Z at hour
h € H of yeart € T can be represented by A5, 7%, fint-

This model assumes that the electric power consumed in a charging station is provided
by one or more of the three energy sources: (i) conventional power generators (CPGs)
generally located at power stations, (7i) solar power sources at the charging stations, and
(7i7) the discharge of EVs into the grid using V2G connection capability. A two-way
connection between the power grid and a station is used in the model, i.e., one for power
flow from the grid to the stations during the charging process and another for the flow from
the stations to the grid during the EV discharging process. Figure 4.1 presents the structure
of the power network consisting of one charging station, one power grid, one renewable
resource, and one electric car battery. During the EV charging process, a cost results from
the charging stations having to buy energy from power grids. However, during an EV’s
discharging process they can sell power to the grid generating income for the station. We
define parameters /¢, ¢;,, and ¢, to be the cost per kWh for charging EVs to use the grid,
solar, and V2G power in hour h € H of year t € T, respectively. We further define ¢, as

the profit per kWh for discharging batteries in hour h € H of yeart € 7.

U

Let g7, and ¢ denote the number of plug-ins of capacity [ € L available at a station
for charging and discharging EVs in hour h € H of year ¢t € T, respectively. We assume

a minimum of ej;, power demand is required to open a charging station while a station
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Figure 2.3: Network representation of an electric vehicle charging station with various
alternative power sources

of size [ € L cannot handle more than cj;” (in kWh) of power demand in a given hour
h € H of year t € 7. The maximum and minimum power grid electricity availability
is denoted by p;},, and p;,,, for each capacity [ € L in cell i € T at hour h € H of
year t € T, respectively. We further define r;;,; to be the solar power availability of a
charging station located in cell © € Z of capacity [ € £ at hour h € H of yeart € T.
Apart from grid and renewable sources, charging stations can also obtain power from V2G
sources. We approximate this availability by )\fht%ht fint Where it is assumed that ¢y, is
the percentage of f;,; vehicles that will discharge power to each charging station located
in cell i € T of capacity [ € £ at hour h € H of year t € T and \%, be the average
unit power discharged from an electric vehicle (in kWh). This formulation assumes that
if the available energy generation is not sufficient to meet the EVs load demand, then
electricity can be imported from other distribution companies for the unmet demand by
paying a unit penalty cost, c¢,, per kWh in hour h € H of year t € 7. Let ¢ and ¢

denote the charging and discharging efficiency and 6“*? be the rated capacity of an electric
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car battery. The state of charge (SoC?) of each vehicle when it is plugged in for charging
and the depth of discharge (DoD*) of each vehicle when it is plugged in for discharging,
are variables. Therefore, electric vehicles coming to the charging stations, whether for
charging or discharging, will have different levels of electricity requirements. For each
cell i € Z in hour h € H of year t € T, we assume ¢}, ¢, to be the maximum and
minimum SoC of the batteries, and similarly, d;t and d,, represent the maximum and
minimum DoD of the batteries, respectively. Note that \§,, and \¢ . denote the unit power
charge requirement and discharge capability for each car in hour h € H of yeart € T,
respectively, which can be obtained as: \§,, = b°P(cj, — c;;,) and A, = b°P(dfy . — d; ).
Finally, we assume that the charging station has an inventory holding cost for batteries,
which is denoted as 77, and the maximum number of batteries that can be stored at hour
h € H of yeart € T is up,. The following additional assumptions made to simplify our

modeling approach are:

Assumption 1 There is an increasing trend in electric car traffic volume over time. This

assumption is consistent with the assumption made by Chung and Kwon [23].

Assumption 2 Every charging station that is opened will also have solar energy as an

available resource.

Assumption 3 Both grid and solar power are available throughout the entire planning
horizon without interruptions; i.e., no disruption will occur during the time horizon that

causes power failure.

3SoC is the ratio of available energy to maximum storable energy in battery
“DoD is used to explain how deeply a battery discharged in electric grid
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Assumption 4 All charging stations will be fast charging DC chargers with battery swap-

ping capability. This assumption is made to ensure the ability to meet the demand.

Assumption 5 All charging stations will be open 24 hours a day, 7 days a week.

Assumption 6 Charging stations will have V2G technology to encourage electric vehicle

owner to sell back power to the grid.

Assumption 7 The proposed model assumes an identical type battery that has a specified

rated capacity can be recharged or swapped at any charging stations.

Let us now introduce the following notation for our two-stage stochastic programming

model formulation:

Sets:

e 7: set of cells

e 7T set of years

e H: set of representing hours in a year

e [: set of capacities for charging stations

e (): set of scenarios

Parameters:
e U,;: annual cost of constructing a charging station of capacity [ € L atcell i € Z in
yeart € T

e B;: budget available for opening charging stations in year t € T
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o fin: flow of electric vehicles in cell i € Z athour h € H of yeart € T

e )\, average charging required of acarincell € Z athour h € ‘H of yeart € T
(in kWh)

e )¢ . average power discharged from a carin cell i € Z athour h € H of yeart € T
(in kWh)

e 1)%,: percentage of cars charging in hour A € H of year ¢ € T under scenario w € (2

e 1, percentage of cars discharging in hour h € ‘H of yeart € T

e 77 unit power grid electricity cost consumed by electric vehicles in hour h € H of
yeart € T ($/kWh)

e ¢;,: unit cost of producing electric power from renewable energy sources in hour
h € Hofyeart € T ($/kWh)

e ¢9: unit V2G electric energy cost in hour i € H of year t € T ($/kWh)

e 1. availability of renewable energy at a charging station located in cell © € Z of
capacity [ € L athour h € H of yeart € T

e ;. /pp,.: erid power availability (maximum/minimum) at a charging station located
incell i € 7 of capacity [ € L athour h € H of yeart € T

e ¢},: unit penalty cost for a power shortage in hour h € ‘H of year t € T ($/kWh)

e ¢j,: minimum power demand required to open a charging station of capacity [ € £
inhour h € Hofyeart € T

e ;7. charging station capacity of size [ € £ in hour h € H of year t € T (in kWh)

e ;.. unit cost of storing a battery in hour h € H of yeart € T

e ¢, unit profit of discharging a battery in hour h € H of yeart € T ($/kWh)
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e ¢/": number of plug-ins available for charging batteries at a charging station of
capacity [ € Linhour h € H of yeart € T

e ¢7: number of plug-ins available for discharging batteries at a charging station of
capacity [ € Linhour h € H of yeart € T

e ;s maximum number of batteries that can be stored at a charging station located
incell ¢ € Z of capacity [ € Linhour h € H of yeart € T

e (“P: rated capacity of a battery

e ¢ charging efficiency of an EV

e 9% discharging efficiency of an EV

e ¢ /c; . state of charge of the batteries (maximum/minimum) at cell ¢ € Z in hour
heHofyeart € T

e d /d, . depth of discharge of the batteries (maximum/minimum) at cell i € Z in
hour h € H of yeart € T

e X{,: congestion costin hour h € H of yeart € T

p.: probability of scenario w € €2

Decision variables:
e Y0 1if a charging station of capacity [ € L is openedincelli € Z of yeart € 730
otherwise
e (4,: amount of grid power used to satisfy demand at cell ¢ € Z in hour h € H of
year t € 7 under scenario w € §2
e 7% .. amount of renewable energy used to satisfy demand atcell 7 € Zinhour h € ‘H

of year t € T under scenario w € 2
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e V. amount of V2G power used to satisfy demand at cell 7 € Z in hour h € H of

year t € 7 under scenario w € §2

e UY,: amount of power shortage at cell ¢ € Z in hour h € H of year t € T under
scenario w € )

e B¢ .: number of batteries in demand at cell ¢ € Z in hour h € H of year ¢ € T under
scenario w € )

e [ ,: number of full batteries stored at cell 7 € Z in hour h € H of year ¢t € T under
scenario w € ()

e 5% .: number of batteries charging at cell ¢ € Z in hour h € H of year ¢t € T under
scenario w € ()

e P%.: number of batteries discharging at cell ¢ € Z in hour h € H of yeart € T
under scenario w € {2

e W5 ,: dummy variable for calculating total amount of power used to satisfy demand

atcell i € Z in hour h € H of year t € 7 under scenario w € 2

We now introduce the following first and second-stage decision variables for our two-
stage stochastic programming model formulation. The first-stage decision variables Y :=

{Yiit }1ec.iez e select the size, location, and time to open a charging station, i.e.,

1 if a charging station of capacity [ € L is opened atcell i € Zinyeart € T
Yin =

0 otherwise;

The second-stage decision variables are: G := {G%,}ieznen teTwen denotes the

amount of grid power used to satisfy demand at cell i € Z in hour h € H of yeart € T
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under scenario w € ; Z := {Z%, }iez hen teT wen denotes the amount of solar power used
to satisfy demand at cell ¢ € Z in hour h € H of year ¢ € T under scenario w € €;
V = {V{, Viez.henteT wen denotes the amount of V2G power used to satisfy demand at
cell i € Zinhour h € H of year t € T under scenario w € Q; B := { B, Viez hem teTwen
denotes the number of batteries in demand at cell ¢ € Z in hour h € H of year ¢t € T under
scenario w € ; H := {H%, }iez hen teT wen denotes the number of full batteries available
atcelli € Zinhour h € H of yeart € T under scenariow € €25 S := {S%, Viez nem teT wen
denotes the number of batteries charging at cell ¢ € Z in hour h € H of year ¢t € T under
scenario w € Q; P := { Py, }iez nenteTwen denotes the number of batteries discharg-
ing at cell i € Z in hour h € H of year t € T under scenario w € Q; W := {W;,}
denotes a dummy variable for calculating the total amount of power used to satisfy de-
mand at cell i € Z in hour h € H of year t € T under scenario w € (2; and finally
U = {Uf, ViezhenteTwen denotes the level of power shortage at cell ¢ € Z in hour
h € H of year t € T under scenario w € ).

With the increase in adoption of EVs in the market, the electricity grid may more likely
to be getting congested due to the large load imposed by EVs during the peak charging
hours. If the load congestion caused by the EVs are not managed properly, the electricity
grid can be seriously impacted due the consequences of such event, examples include but
not limited to the direct failure of distribution transformers, feeders, and many others. We
assume that when all the available plug-ins (both charging and discharging plug-ins) are
occupied by the EVs during a peak operating hour, the power requirement of the EVs, WS,

approaches the capacity ¢;;; of the charging station ¢ € Z. Under steady-state conditions,
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the system-wide average load, considering only the charging station facilities, can be rep-

resented as: ) 7> oy ZtGT(ZH it T ) For a charging station i € Z, when

e Yiie=Wip,

concentrated charging occurs in the EVs on a specified hour h € H of a given yeart € T,
the ratio of this equation grows exponentially. Hence, the impact of load congestion can be
realistically addressed by the model. Let xj, be the load congestion price charged by the

charging station at hour h € ‘H of year ¢t € 7. The system-wide load congestion cost now

iht

becomes: D i > pen Dover Xt (Zlec Cff‘fl%tt e ) Taking this factor into considera-
Y 7

tion, the following two-stage stochastic Mixed-Integer Nonlinear Programming (MINLP)

model, referred to as [NEV], can be formulated as follows:

[NEV] Minimize SN Wi+ > puQ(Y,w) 2.1)

leL €T teT weN

subject to

ZYM < 1 VieZteT (2.2)
leL
Yieer < Y VieLicelteT 2.3)
Y>> WY < B, VteT (2.4)
lel i€l
Vie € {0,1} VieLieZteT (2.5)

with Q(Y, w) being the solution of the following second-stage problem:

— . . . w Cht) w (Cipg)\zcht> w
QY.w) c%iﬁ%?éﬁsZZZ{( G50+ () 28, + (H0) By

i€ heH teT

v2g w d
Cht ) w (%) e ( Wik ) _ (Cm&m) P }
( e ) ikt + ge ) Ziht + YneHine + X S er oY — W, 9 iht

(2.6)
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el
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> wiYin Vi€ Lhe Hte T,weQ (2.10)
leL

Heq Vi€ he H\|H|,teT,weQ (2.11)

HEy o Vie It e T\|T,weQ (2.12)

OVieZ,we (2.13)

By, +P;,VieZ he H\|H|,teT,wel

S drYuvieTheHteT,weq
leL

g VieILheHteT,weQ (2.16)
leL

S Y VieLhe HteTweQ (2.17)
leL

ZPﬁmYut VieZ,heH,teT,weQ (2.18)
leL

Z N st fint Vi Vi €T, h € H,t € T,w € Q
el

S rimYuVieLhe HteT,weQ (2.19)
lel
Z+

(2.15)

VieZ,heH,teT,we (2.20)

0 VieZ,heH,teT,we (2.21)

The objective function (2.1) is the sum of the first-stage costs and the expected second-

stage costs over all scenarios. The first-stage decisions minimize the charging station open-

25

www.manharaa.com



ing costs. Constraints (2.2) ensure that at most one charging station of capacity [ € L is
opened in a given cell © € Z in year ¢t € 7. Constraints (2.3) indicate that if a station
is opened in an earlier time period, it will remain open in the subsequent time periods.
Constraints (2.4) restrict the number of charging stations that can be opened in a given
year t € 7 with a pre-specified budget. Constraints (2.5) set the binary restrictions for the
first-stage decision variables.

The objective function (2.6) minimizes the expected value of the second-stage costs.
More specifically, the first four terms in (2.6) represent the cost of charging stations due
to using grid, renewable, battery, and V2G power sources, respectively. The fifth term
represents the expected penalty costs in case of electricity shortage. The next two terms
represent the cost associated with not satisfying the electricity demand and storing of bat-
teries in the charging stations. The last two terms of the objective function represent the
expected load congestion cost and profit gained due to discharging batteries in the charging
stations. Constraints (2.7) calculate the total amount of electricity used (via grid, renew-
able, battery, and V2G) in a given cell © € Z at hour h € H of year ¢t € T under scenario
w € . Constraints (2.8) ensure that opening a charging station at a given cell i € 7
mandates a minimum power availability. Constraints (2.9) indicate that the power demand
(Ao, fine) for each cell © € Z must be satisfied either through the power grid, renew-
able resources, V2G, swapping batteries, or through the purchase of electricity from other
power distribution companies. Constraints (2.10) restrict the number of batteries that can
be stored in a charging station. Constraints (2.11) and (2.12) decide the hourly storing,

charging, and discharging battery decisions for a charging station located in cell 7+ € Z of
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a given year t € T under scenario w € (2. Constraints (2.13) indicate that the first hour
of the planning horizon starts with no charged batteries. Constraints (2.14) indicate that
battery charging decisions made on hour (h + 1) is dependent on the number of batteries
being charged and discharged in hour . Constraints (2.14) ensure that the number of bat-
teries that should be charged in the first hour of year (¢ + 1) is dependent on the number
of batteries being charged and discharged in the last hour of year ¢. Constraints (2.15) and
(2.16) indicate that the number of batteries charged or discharged should be limited by the
number of plug-ins available at the charging stations. Constraints (2.17) indicate that the
amount of power used (via grid, renewable, battery, and V2G) at a charging station located
incelli € Z athour h € H of year t € T is limited by the capacity (cj,;) of the station. To
ensure power stability, grid power usage at a charging station located in cell ¢+ € Z at hour
h € H of year t € T under scenario w € (2 should fall between a minimum (p;;,,) and
maximum (pjlht) limit. This is ensured via constraints (2.18). Constraints (2.19) indicate
that the availability of V2G power in a given cell 7 € 7 is limited by the electric vehicles
willing to discharge at hour i € H of year ¢ € T under scenario w € (). Constraints (2.19)
limit the usage of renewable power in a given cell ¢ € Z at hour h € H of year t € T under

scenario w € () to its availability (r;;;,). Constraints (2.20) and (2.21) are the standard

integrality and non-negativity constraints, respectively.

2.2.2 Model Linearization
Model [NEV] is nonlinear due to the presence of a nonlinear congestion cost function

in the objective function. This cost grows exponentially as the load of a charging station
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approaches its capacity. To linearize this term, we adopt an approach proposed by Elhedhli
and Wu [30]. Let us now introduce a new decision variable F := {F};, }icz new teTwen

which can be defined as follows:

Ww
Fviw iht (222)
" D tec Cint Yie — Wiy
where equation (2.22) can be further reduced as follows:
it = (%) Cit Yiit = Z Clht < " )Yﬁt Viel, (2.23)
L+ Fy leL lec 1+ F'Lht

heH,teT,wel

Let us introduce another continuous variable X := { X}, }ic.iez net teT weo Which is

defined as follows:

Y
Xt = M ) Vi VielfieT heHteT,we (2.24)
L+ Fij,

when {Y;: }ieziez.te7 = 1, the above equation reduces to the following:

X b VieT h t 9) 2.25
; e = T4 i €T, heH,teT,we (2.25)

It is interesting to note that for the case when { Y }iec.iczte7 = 0, constraints (2.24)
force { X%, }iecieznemteTwea = 0. This condition is enforced via introducing the fol-

lowing additional constraints in the model formulation:
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0< X, <Y VleLlicIheH,teT,we (2.26)

. F¥ . . .
Lemma 1 The function defined by X, (Fy;,) = 1 +I§f2 - is a concave function in I}, €

(0, 00).

Proof: The first derivative w.r.t. F, is 55 (X{2,,) = 1/(1+ F%,)? > 0. Again, taking the
iht

second derivative of the previous function provides: #;tz()( e = —2/(1+ Fg,)% < 0.
The positive value in the first derivative and negative value in the second derivative proves
that the function X}3,,(F},) is concave in FJ,. n

Lemma 1 implies that the concave function X%, ,(FY,) can be accurately approximated

by adding the following set of tangent cutting planes [30]:

Fy F¥ o\
iht — MznmEM[ 'Lht7 )2 +( iht ’ ) :| (227)

which can be represented by:

Fy, __ Fi
TR (R

F'w,m 2
+ it ) eI, heH,t€T,meM,we Q2.28)
L+ Fyy

where {F;" }iet nen teT weamenm indicate the set of points to approximate equation
(2.26). Since the value of {Y;; }ier ez te7 is finite; the value that {F;, }iez new teTwen

provides is also finite. This implies that the set M should be finite. Then, equation (2.29)

can be derived from (2.25) and (2.28) as following:

29

www.manaraa.com



Fy Fomo N2
> Xi < bt 2+( ”%,m) VieT,heH,teT,me M,we Q229
lec (1+F3) L+ Fy

The approximated linearized objective function of [NEV], referred to as [LEV], is as

follows:

o GIN e
LEV M 2 2 (Z Vit 303 ()Gt 230
€L teT lel heH wef2

v2g

cr . AINS " c y N
(ﬁ)Zz‘ht + ( htﬁc ht>Biht + (h_tc> iht T <ﬁ)Uiht+

C;ilt)\dht
i+ X i — (220) P, )

subject to (2.2)-(2.5), (2.7)-(2.16), (2.18)-(2.20), and

Wiy <> X, VieI,heH,teT,we 2.31)
lel

w ‘F;U;Lt F;(;}L’tm ? -
ZXW < =t Tt Fo VieZ heH,teT,meM,(2.32)
lel (1+Fih% ) T Hiht

w € N

X < Y VieLlicIlheH,teT,we (2.33)

X Fine > 0 YleLiieZ, he HiteT,wel (2.34)

2.3 Solution Approach

In this section, the solution techniques used to solve model [LEV] are discussed. For
a single scenario (|Q2| = 1), single year (|7| = 1), and single hour (|H| = 1) case, we
can show that model [LEV] is actually a special case of a capacitated facility location

problem which is known to be an \P-hard problem [73]. Therefore, commercial solvers,
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such as CPLEX/GUROBYI, fail to solve large-scale instances of this problem. To overcome
this computational burden, a hybrid sampling based decomposition algorithm is proposed.
The hybrid algorithm nests a sample average approximation algorithm and an enhanced
progressive hedging algorithm within a constraint generation algorithmic framework. The
aim is to generate a high quality feasible solution for the [ILEV] problem in a timely fash-

ion.

2.3.1 Constraint Generation Algorithm

In (2.33), model [LEV] generates a large number of constraints. This will pose a seri-
ous challenge in solving model [LEV] efficiently by taking into account all the constraints
at once. To remedy this problem, a constraint generation ([CG]) algorithm is developed
that can efficiently and effectively solve model [LEV] despite generating a large number
of constraints through (2.33) at once. A few recent studies, such as [128], [95], and [121],
support that [CG] is capable of solving similar problems efficiently. The algorithm pro-
ceeds by solving a series of MILP programs with a subset of the constraints obtained from
(2.33) and added thereafter as needed. The algorithm terminates when it finds a solution
for the sub-problem which does not violate any constraints within some accepted tolerance
in the full problem [NEV]. Otherwise, a new set of points i.e., a new set of constraints/cuts,
are generated and added to the original model [LEV] in the next iteration. The details of
the algorithm are discussed below:

Let us define UB? and LB? as an upper and lower bound of the original problem at

iteration q. We further define v[LEV] as the solution of the objective function value of
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[LEV] with
(Y?,G?,Z7,B7, VI, U4, W H? P, S7) as its optimal solution. Propesition 1 provides the

lower bound of the [CG] algorithm.

Proposition 1 Equation (2.35) provides the lower bound of the optimal objective function

value of [NEV] for any given subset of points {F;;™ } pac .

LB =v[LEVI(M") = (Z Wi+ > puf ( - ) Gt (2.35)
i€Z teT \ leL heH weQ
v2g

c AINS " c 5 . 3
(éf)zzht + ( htf}c ht>Bz‘ht + ( g.tc ) iht T <Q90> it T YneHine + X Fine—

(5

Proof: [LEV](M?) is the relaxed version of problem [LEV]. Therefore, the optimal objec-

tive function value v[LEV](MY) obtained from equation (2.35) provides the lower bound
to the optimal objective value of [LEV]. Let v[LEV] and v[NEV] be the optimal objective
function values obtained from [LEV] and [NEV], respectively. Thus, it can be stated that
v[LEV](M?%) < y[LEV]. Again, problem [LEV] is an approximation for problem [NEV];
therefore, the solution v[LEV](M?) will also provide a valid lower bound for the optimal
objective function value of [NEV]. Finally, it can be stated that v[LEV](M?) < v[LEV]
<v[NEV]. [

The algorithm starts with a subset MY C M of the cuts where M can be empty or
chosen a priori while the rest are generated as needed. The subset of points { F};}" } yacm
are required to obtain the initial subset of cuts and are used to approximate function

X5 (Fs). The resulting set is then used to obtain v[LEV](M?) which provides a valid
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lower bound for the original [NEV] problem (as shown in Proposition 1). This solution is
then used to obtain an upper bound for the [CG] algorithm, as illustrated in the following

proposition.

Proposition 2 Equation (2.36) provides an upper bound of the optimal objective function

value of [NEV] for any given subset of points { F;;}" } pac m-

UB = ZZ(Z%JZ”JFZZW{( L) ;Jht+(19 VZa+ (236

i€ teT lel heH wef
v2g

Cht Mt \ o ¢ w
( htﬁcht)Biht + ( gi >V;ht <$t> it T VneHin+

c Wine ChtA?ht w
(55— gy — (5 ) P
" Zzez Clhf Yiie — Wi, Ve "

Proof: All the feasible solutions of [LEV](M) also provide a feasible solution to [NEV]

since all the constraints of [NEV] are contained in [LEV](M?Y). Therefore, the objective
function value of [NEV] evaluated at (Y?, G, Z¢, B?, V¢ U, W H? P S?), as shown in
equation (2.36), provides an upper bound for the optimal objective value of [NEV]. [

The algorithm continues until the gap between the lower and upper bound falls below a
tolerance level ¢; otherwise, a new set of points { F};,""“*} are generated using the current

solution (shown below) and the process continues.

w7q

Fw7mnew _ tht
iht - apy,q w,q
> iec Cnt YViie — Wi

(2.37)

A pseudo-code of the [CG] algorithm is provided in Algorithm 1.
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Algorithm 1: Constraint Generation Algorithm
Initialize: g <+ 1, ¢, UB? < 400, LBY < —00
terminate <— false
Selecting an initial set of points: { £}, } mac
while (terminate = false) do
Solve [LEV](M?Y) to obtain v[LEV](M?Y) and (Y?, G?, Z,B?, VI, U?, W4,
H? P? S%)
Update the lower bound: LB? < v[LEV](M?Y) using (2.35)
Update the upper bound U B using (2.36)
if (UB?— LBY)/UB‘ < ¢) then
terminate <— true

else
F'vanew — pz‘;ﬁz’tz =
thh " Zleﬁ St YViie=Wink
w7 7q —_— w7 7q w7mn€“)
F T = Fy U {Ee
end if
qg+—qg+1
end while

2.3.2 Sample Average Approximation

Solving model [LEV](M?) and obtaining a valid lower bound using [CG] algorithm
is still considered challenging. The actual percentage of electric vehicles 7y, that require
charging in a charging station located at cell © € Z in hour h € H of year t € T varies
significantly from one hour to the next within a given year. Therefore, it mandates evaluat-
ing a large scenario set to provide meaningful insights for the decision makers. However,
evaluating such a large scenario set increases the size of the problem and thus poses a sig-
nificant computational challenge in solving model [LEV] in a reasonable amount of time.
To remedy this computational burden, a sampling technique, commonly known as the Sam-
ple Average Approximation (SAA) method, is employed. SAA is used extensively to solve
large scale network flow-related problems, such as [120], [101], [105], [106], and many
others. Interested readers may refer to the work by Kleywegt et al. [62] for the proof of
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convergence properties of SAA, and Norkin et al. [85] and Mark et al. [75] for the evalua-
tion of statistical performance of SAA (e.g., validation and error analysis, stopping rules).
In SAA, a sample set {wl, w2, WV } of N scenarios are generated from €2 according to a
probability distribution [P and they are solved repeatedly until a pre-specified tolerance gap
is achieved. The lower bound of the [CG] algorithm, defined by equation (2.35) subject to
constraints (2.2)-(2.5), (2.7)-(2.16), (2.18)-(2.21), and (2.31)-(2.34), is now approximated

by the following SAA problem:

LB =vLEVIMY) =3 (Z Wit Yise + — Z Z { ( )G?ht+ (2.38)

i€l teT lel
v2g

c n Cp )\z n c n n
(;j)zzht ( htﬂc ht>Biht + < g,i )V;ht (Q;Lt) ihe T YneHine + X Fine—

()m))

As the sample size increases, the optimal solution of [LEV](M?Y), i.e.,

(Y?,G?,Z7,B7, VI, U?, W H? P S?) and the optimal objective value v[LEV](M?) con-
verge, with a probability of one, to an optimal solution of the original [EVC] problem [62].
Assuming that the SAA problem is solved within an absolute optimality gap 6 > 0, we can
estimate the sample size /N needed to guarantee an e-optimal solution to the true problem

with a probability at least equal to (1 — «) as:

30 mas
> ﬁ(|1\|KHT|(Zog2) loga) (2.39)

where € > §, a € (0,1), and 02, is a maximal variance of certain function differences

[62]. Estimating the sample size using equation (2.39) is too conservative for practical
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applications. Thus, one can choose a sample size N as a trade-off between the solution
quality obtained by solving (2.38) to the original problem (2.35) and the computational
burden needed to solve it. In each iteration of the algorithmic step, SAA provides a valid
statistical lower and upper bound for the original [EVC] problem and the process termi-
nates when the gap between the estimators falls below a pre-specified threshold value. The

main steps of the SAA approach can be explained as follows:

1. Generate O independent scenarios of size /V that have different car recharging per-
centage scenarios i.e., {n}(w), n2(w), ..., N (w)}; Yo = 1, ..., O, where = {ns;; Vh €
H,t € T,w € Q} and solve the corresponding SAA (2.35). The lower bound prob-
lem for the [CG] algorithm, defined by (2.35) and subject to constraints (2.2)-(2.5),
(2.7)-(2.16), (2.18)-(2.21), and (2.31)-(2.34), can now be approximated by the fol-
lowing SAA problem. For notation brevity, the mathematical model can be repre-

sented as follows:

N
Mipimize { iy =33 ( S WY + % ; QY, n)> } (2.40)

1€ teT leL

where each sample o consists of /N realizations of independently and identically
distributed (z.7.d) random scenarios. The optimal objective value is denoted by v,

and the optimal solution by SA(?V; o=1,...,0.

2. Compute the average of the optimal solutions obtained by solving all SAA problems,

2

v} and variance, oy
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) 1
o= 5ZV7V (2.41)

where V5 provides a statistical lower bound on the optimal objective function value
for the original problem (2.35), i.e., Vg < v* [86]. Since O samples are generated

and v}, v%,, ..., v§ are independent, the variance of V3 is given by:

16)
1 2
2 _ o _gN
% = ©o-To ;1 (vN v0> (2.42)
. Pick a feasible first-stage solution Y € Y obtained from Step 1 of the SAA algo-
rithm, i.e., one of the solution from SA((;V and estimate the objective function value of

the original problem using a reference sample N’ as follows:

En(Y)=> ) (Z Uy Vi + % ; Q(Y, n)) (2.43)

i€ teT leL

The estimator g,,(Y") serves as an upper bound for the optimal objective function
value of the [LEV](M?) problem which will be updated in each iteration if the value
obtained is less than the value of the previous iteration. We now generate a large set
of electric vehicle recharging scenarios (N') i.e., {n'(w), n?*(w), ..., (w)}; Vn =
1,..., N'. Typically, the sample size N’ is chosen to be much larger than the sample
size N in the SAA problems. As discussed by Kleywegt et al. [62], the optimal

value of an SAA problem converges to the optimal value of the “true” problem with
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a probability of one under the condition of N — oco. We can estimate the variance

of gn/(Y) as follows:

UN/
n=1 €T teT lel

(V) = Wi 330 (3 Wi+ @(Ym) ~ &)}

where Q(Y, n) represents the solution of the second-stage problem.

. . 2 . .
) and its variance (%ap) using the esti-

4. Compute the optimality gap (gapn, s, N,(f/)

mators calculated in Steps 2 and 3.

gapnon(Y) = gn(Y)—vy
Oy = UJQV/(Y)—FO‘?,g

The confidence interval for the optimality gap is then calculated as follows:
3 3 1/2
with z,:= ®71(1 — «a), where ®(z) is the cumulative distribution function of the

standard normal distribution.

2.3.3 Progressive Hedging Algorithm

Step 1 in the SAA algorithm involves solving a two-stage stochastic programming
, and |7, the SAA

model consisting of N scenarios. Depending on the size of |Z|, |H

problem can still be considered challenging from the solution standpoint. To divide the
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problem into smaller and more manageable subproblems, a scenario decomposition tech-
nique, commonly known as the Progressive Hedging Algorithm (PHA), is employed [103].
The PHA utilizes an augmented Lagrangian relaxation scheme to solve a number of indi-
vidual scenario subproblems and finally aggregate the individual scenario solutions. The
PHA offers high quality solutions in solving a variety of application-specific problems,
such as financial planning [82], fisheries management [49], surgery planning [43], biofuel
supply chain network [100, 96], and many others. Interested readers can review the studies
by Wallace and Helgason [123] and Watson and Woodruff [126] for a detailed discussion
about the theoretical properties and algorithmic implementation of PHA.

Constraints (2.8), (2.10), (2.15)-(2.19), and (2.33) in g(Y}) (shown in Step 1 on SAA
algorithm) link the first-stage decisions with the second-stage decision variables. These
constraints will not allow problem g(Y}) to be separable by scenarios. To remedy this
problem, we create a new variable {Y, }vicriczieTnen € {0, 1} that ensures a copy of
the first-stage decision variables is created for each scenario n € N. Problem g(Y) can

now be rewritten as follows:

N

- ()2

oM (Z%YMZ{( £) Gt () Ziat @4%)
n=1 1€Z teT leL

v2g
t

< h%_c ht>Biht + ( :;C )Viht + (19C>Uzht + VneHine + X i — ( hz?dht>Piht}>

subject to: (2.7), (2.9), (2.11)-(2.14), (2.20), (2.21), (2.31), (2.33), (2.34), and
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Bt VteT,nEN

SeqviavieLhe HiteTneN
lel
Z’UlihtY}Z VieZ,heH,teT,neN
lel
S drynvieLheHteT,ne N
lel
Zqﬁﬁtiﬁg VieZ,he H,teT,neN
lel
S YavieTLhe Hite ToneN
lel

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

S NaufmYisVieLhe HteT,neN (2.53)

lel

S YavieTheHiteTneN
lel

Yiit VieLiceIteT,neN

(2.54)

(2.55)

Yk VieLicT,teT,(nk)eN,n£k (2.56)

{0,1} VieLicZteT,neN

The following constraints are equivalent to (2.56):

40

(2.57)

Constraints (2.56) are known to be as nonanticipativity constraints, which link the first
and second-stage decision variables and force all the scenarios to yield the same first-
stage decision variables. This makes the model not separable by scenarios. To make the
model separable by scenarios and to apply Lagrangian relaxation, we need to rewrite the

nonanticipativity constraints. Let {Yy;; bvicz.iezre7 € {0, 1} be the “overall design vector”.

www.manaraa.com



Y = Y VieLNVieTI,teT,neN (2.58)

Vi € {0,1} VieLi€ZteT (2.59)

We employ the augmented Lagrangian strategy proposed by Rockafellar and Wets

[103] to relax constraints (2.58) and obtain the following objective function:

iy SEE (R S (B oo
n=1 i€Z teT lel heH
v2g

i\ om HINS " c N ¥ . .
(ﬁ) Zint + ( ’“;96 ht)Biht + ( gtc ) it T (190) it T VneHine + XnaFine—
s — 1 —
( i th)PZilzt} + Zélzt lzt Ylit) + 5 ZW()/ZZ - Ylit)Q)
leL

where {&€]}, bvieriezteTnen defines the Lagrangian multipliers for the relaxed con-

straints and 7 defines a penalty ratio. Given the binary requirements of variables

{Yii e ez et nen and {Yiy bvie jez e the quadratic term Y, >y cr e @(Vi0 —

fﬁit)Q shown in the above objective function can be reduced as follows:

DD AV V) = ( (Vi) 21rymm+7r(Y))

leL i€ teT leL €T teT

o

= (ﬂYEzt 27rY21tY274t +m
€T teT

le

o

i

Meanwhile, the objective function can be reduce as follows:
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N
L 1 n = T
Minimize EN E o E ( E (Wi + &y — Y 33 + §)Ym+ (2.61)

Y,G,Z,B,U,V,W,H,P,S ,X’ I 7_, l E £

v2g

i\ c " I n c n cy
Z {(ﬁ) iht T (ﬁ)ziht T ( higc ht)Bzht - ( gf: ) iht T (196) int T VneHin
heM
(& n Cd 7
Xnttine — ( = ht) mt} Zfzzt it T 5 ZﬂYEn>

When the value of the overall plan {l_ﬁgt}\ﬂe ciczteT 18 fixed, the last two terms of the

above objective function become constant and thus can be eliminated from the formulation.
This allow the subproblems to be separable by scenarios, and the overall problem for each

scenario n € N becomes:

N
o 1 n = T
VARV 2 2 2 (Zﬂf Ho et N @)
FIN LGN (XS N
> { (G cnr (G2 (S () v (G2 vt

heH

C;izt)‘dht
Vit Hine + XneFihe — ( 19; >Pz7ut}

subject to

Svp < IVieTteT (2.63)

lel
Y, < Y5 VieLicZteT (2.64)
> Uy < B WeT (2.65)

leL €T

e+ 2+ Vi A Bh, = WhVieZ heH,iteT (2.66)
B> > e YnvieLheH teT (267

leL
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Here, {£,. Yvicr,ictteTnen and " denote the lagrangian multipliers and penalty pa-
rameter of the PHA, respectively which are updated at each iteration r. The general idea of
the basic PHA is to solve /N deterministic [LEV(PHA)] problems and obtain the consensus
parameter {}_/l;'t}We c.iezte7- 1f the gap between the binary variable Y;;," and the consensus
parameter Y}, falls below a threshold value € (i.e., e = 0.001) foreachl € £,i € Z,t € T,

then the algorithm terminates; otherwise, the value of §;;; and 7" are updated using equa-

tions (2.86) and (2.87) and the process continues.

e g T e Y - Y VieLicI,teT (2.86)
7 «— an"! (2.87)

where « is a given constant which we initialize to o > 1. We further initialize {Z.;O —
0;Vl € L,i € Z,t € T,n € N. Finally, w° is set to a fixed positive value to ensure that
m" — oo as the number of iterations, 7, increases. Pseudo-code of the basic progressive
hedging algorithm is provided in Algorithm 2.

Termination Criteria: The progressive hedging algorithm terminates when one of the
following conditions is satisfied:

o L S e S ier S er [Yi" Y5 | < € where ¢ is a pre-specified tolerance gap,

e 10 consecutive non-improvement iterations occur,

e Maximum iteration limit is reached (i.e., ¢ter™** = 100), or

e Maximum time limit is reached (i.e., time™** = 10,800 CPU seconds).
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Algorithm 2: Progressive Hedging Algorithm
Initialize, r < 1, €, {€};} bvieT kexteTnen < 0, "  w°
terminate <— false
while (terminate = false) do
forn=1to N
Solve [LEV(PHA)] and obtain {Y}.," }vier iz teTnen
end for
Calculate the consensus parameter:
Vi 2N YeVleLi €T, teT
if (r > 1) then
Update the largangian parameter:
P T T Y Y e Li eIt e T
Update the penalty parameter:
7" < an" land o > 1

end if
if ((Yl?{r - let_l)VZeﬁ,ieI,teT <€) then
terminate <— true
end if
r<r+1
end while

2.3.4 Enhanced Progressive Hedging Algorithm

The PHA technique demonstrates high computational capability in solving small to
medium sized network problems. However, the technique fails to provide a reasonable
solution for sufficiently large sized network problems. This motivates us to explore addi-
tional enhancement techniques (e.g., local and global heuristics, dynamic penalty param-
eter updating technique, and different variants of the rolling horizon heuristic) to improve
the convergence and stability of the PHA. The following subsection investigates few PHA

enhancement techniques in an attempt to solve model [LEV(PHA)] faster.
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2.3.4.1 Penalty Parameter Updating

Prior studies such as [21, 53] show that the performance of the PHA technique can be
significantly improved by choosing an appropriate 7 value. For instance, the algorithm
converges faster to a sub-optimal solution for a sufficiently large 7 value. In contrary, the
algorithm takes a longer time to converge if a conservative value is chosen for 7. Since
there is no way we can estimate the appropriate 7 value for a given optimization problem in
advance, we adopt the strategy proposed by Hvattum and Lokketangen [54] to dynamically
adjust the value of 7 over iterations based on the computational performance obtained
from prior iterations of the PHA algorithm. Let A} and AJ define the indicators of the
convergence rates in the dual and primal space, respectively. The penalty value can now

be updated as follows:

NI 3 3) 3p L1 e @88)

leL i€ teT neN

N )3 S T 259

lel i€l teT

er™ b if AT — AT >0
T = éw”_l else if AL — ALt >0 (2.90)

a1 otherwise

where ¢ is a constant parameter which value is set to ¢ > 1.
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2.3.4.2 Heuristic Strategies

This section utilizes two heuristic strategies, referred to as local heuristic and global
heuristic, to enhance the performance of the PHA technique [28]. These strategies are
used to modify the value of U;; in an attempt to solve model [LEV(PHA)] faster. The
first strategy is referred to as global heuristic since this strategy adjusts the value of W,
at the end of each iteration r. On the other hand, the second strategy, referred to as local
heuristic, adjusts the value of W;; within the scenario level.

We realize that problem [LEV(PHA)] can be decomposed into a series of /V determin-
istic sub-problems. At the end of each iteration r of Algorithm 2, we can obtain the values
of the consensus parameter {)_/l:t}\ﬂe c,iczte7 Which provides an indication of how many
times a charging station of capacity [ € L is opened in cell © € Z at time period t € T
in the previous iterations. A higher value of Y}, indicates that the charging station of a
specific size, location, and year was selected many times in the previous iterations. Con-
versely, a lower value of Y7, indicates that the charging station of a specific size, location,
and year was not a favorable decision in most of the previous iterations. Let @ and a be
the two parameters that define an upper and lower threshold value. If the value of Y}}, is
greater than the threshold value @, then lowering the W;;; value will attract the subproblems
to use that cell more frequently in the coming iterations. Similarly, if the value of Y}, is
lower than the threshold value a, then increasing the W;;; value will discourage the remain-
ing subproblems from using this cell in the coming iterations. This will allow a few of the

charging stations to be fixed to value of either one or zero and thus help reduce the size of

the problem. The adjustment strategy is given below:
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.
Ul iyl <
T¥ 13 lit a

=Ll ifyTls g 2.91)

T = lit lit

it Otherwise
\

where U7, represents the modified fixed cost of opening a charging station of capacity
l € Latcell i € 7 in time period ¢ € T and iteration r; 7 is a constant parameter whose
value is set to 7 > 1; and a and @ are the two constant parameters whose values are set to
0<a<03and0.7 <a < 1.

The global heuristic strategy can be enhanced further by modifying the selection of
W, locally within the scenario level. This strategy is referred to as a local heuristic [28]
since the modification of W;;; only impacts the current subproblem at scenario n of a partic-
ular iteration r. This strategy emphasizes modifying the costs associated with selecting a
charging station of capacity [ € £ at cell 7 € Z in time period ¢ € T under scenarion € N
at iteration r, if the gap between Y,};" and Y}}, is sufficiently large. The local adjustment

strategy applied to Algorithm 2 is as follows:

/

r : n,r—1 T far n,r—1 _
T, if [V — Y| > @/ and Yy =1

U =< 1yr if V2 = V| > af and Y =0 (2.92)

v, Otherwise
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where W) represents the modified W;;; of selecting a charging station of capacity [ € £
at location ¢ € Z in time period ¢ € T under scenario n € N and at iteration 7; 7 is a
constant parameter whose value is set to 7 > 1; and a’® is a threshold value at which a

local adjustment to the W;;; is made and is set to 0.5 < afor < 1.

2.3.4.3 Rolling Horizon Heuristic Strategy

Algorithm 2 requires solving a deterministic, multi-time period problem [LEV(PHA)]
N times. This evaluation may be considered challenging from a solution standpoint. One
way to tackle this problem is to split the planning horizon (i.e., years and hours) into
multiple slices and solve them sequentially until all the slices are investigated. To serve this
purpose, this study employs a Rolling Horizon heuristic ([CG]) that decomposes problem
[LEV(PHA)] into a series of smaller subproblems comprising a few consecutive hour-
year combinations from the overall planning horizon. The algorithm terminates when all
the hour-year combinations of the planning horizon are investigated. Interested readers
can review the studies by Balasubramanian and Grossman [11], Poudel et al. [94], and
Kostina et al. [63] to learn more about the rolling horizon heuristic. In this section, we
present three different variants of the rolling horizon heuristic. The aim is to identify
which variant of the rolling horizon heuristic provides a quality solution in solving problem
[LEV(PHA)] in a reasonable amount of time. The first variant of the rolling horizon
heuristic, referred to as [RH1], decomposes problem [LEV(PHA)] on yearly basis. The
second and third variants of the rolling horizon heuristic, referred to as [RH2] and [RH3],

decompose problem [LEV(PHA)] on hourly, and the combination of hourly and yearly
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basis, respectively. A pseudo-code of the basic Rolling Horizon heuristic is provided in
Algorithm 3.

Let [LEV(PHA(r))] be an approximate subproblem of the rolling horizon algorithm at
iteration 7. We further let ¢, h{, M", and )" be the starting time period for years, hours,
and number of time periods for years and hours for each subproblem r, respectively. In
the rolling horizon heuristic, one can either set a fixed value of M" and ()" or vary them
across the different iterations of the algorithm. For each scenario n € N, the approximate
subproblems [LEV(PHA(r))] are solved by setting the variables as: (7) {Y}Z}w cricTieTE

{0,1} and {B3,, H}},, S5, € Ztforty <t <th+ M and hy < h <

n
Piht }Vz‘ez,heH,teT

hi + Q" (i1) 0 <{Yz < 1and {By},, H},, S5, € R for

. , Pyt
wIvleL ieZ teT tht e he H,teT

t > t,+ M"and h > h{, + Q". After solving a subproblem, we fix the values of Y};;" =
YA IMleLi€eT,teT; Bl =By '\ YieT,he H,t € T, Hl = H" ' Vi €
IZheHteT, Sy =Sk '\ YieZ,heH,teT,and P}/ = Pyl ' Vi€ he
H,t € T fort < tjand h < h{ and update the step size r. Note that by varying parameters
o, hi, M7, and Q" a number of different variants of the rolling horizon algorithm can be
developed. Figures 2.4-2.6 provide an illustration of solving a three year and four hour
time period problem using three different variants of the rolling horizon heuristic ([RH1]-

[RH3]). Later in Section 2.4.2, we analyze the settings at which a particular variant of the

rolling horizon heuristic solves problem [LEV(PHA(r))] efficiently.
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Figure 2.5: Illustration of a rolling horizon strategy for [RH2]
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Algorithm 3: Rolling Horizon Heuristic

r 41,15 < 0, hy < 0, M", ", terminate < false

while (terminate = false) do
Set:

n n +
* { lzt}\ﬂel: zeIteTE {O 1} and {Bzht’ lht’ iht» Piht VieZ,heH,teTe Z
fortf <t <t{+ M"and hjy < h < h’"—l—QT

0 <{ lit S vieL ieZteT—
fort >t + M" and h > h{ + Q"

< land {Bzht’ zht? iT;Ltvpn

+
iht }Viez,he%teTe R

Solve the approximate sub-problem [EVC(PHA(r))] using CPLEX

if(tp > |7|) then
terminate <— true
else
Fixing the values of {Y},

fort < tj and h < h{

n i
VIELGET LT’ {Bzht’ zht> iht’Piht}VieI,heH,teT

end if
r<r-+1
end while
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Figure 2.6: Illustration of a rolling horizon strategy for [RH3]

2.4 Computational Study and Managerial Insights

This section summarizes our computational experiences in solving model [LEV] using

the nested algorithms proposed in Section 2.3 and offers managerial insights derived from
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a real life case study. All the algorithms are coded in GAMS 24.2.1 [39] and executed on
a desktop computer with an Intel Core 17 3.50 GHz processor with 16.0 GB RAM. We use

ILOG CPLEX 12.6° as an optimization solver.

2.4.1 Input Parameters

This study considers Washington, DC as a testing ground to visualize and validate the
modeling results. A network representation and demand distribution for Washington, DC
is shown in Figure 2.7. The main reason behind choosing Washington, DC is that the area

has a strong growing electric vehicle population over other major metropolitan cities in

US. We divide the entire map into grids of size 306 cells (i.e., |Z| = 306) where each cell
corresponds to an area of approximately 1.0 mile?>. The data for cell-specific parameters
are obtained only for those that have a road passing through them; otherwise, the values
for the cells are set to zero. We have considered a 5-year planning horizon starting in 2018
and ending in 2022 (|7| = 5). Further, we have drawn a representative 24 hour period
from each year of the planning horizon to account for the short term operational decisions
(|H| = 24). Note that all cost components are calculated based on 2017 dollars and are
adjusted based on inflation. The cost of opening an electric vehicle charging station that
includes a battery swap station (W) at cell ¢ € Z is set to be $500,000 [40]. We consider
three different electric vehicle charging station capacities (I = 400 kWh, 500 kWh, and

600 kWh). We assume that we are given an annual budget (B; = $5M, $6M, $7M, $8M,

and $9M) to build infrastructure for EV charging stations (which include battery swapping

Shttps://www-01.ibm.com/software/commerce/optimization/
cplex-optimizer/
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capabilities) for our test region in years 2018-2022. The hourly electricity pricing plan for
power grid (c}7), renewable resources (c},), and V2G (cﬁ" ) are obtained from [104, 108,
91]. The projected flow of cars f;;; ateach cell i € Z of hour h € H inyeart € T is made
based upon the number of EVs available in Washington, DC in 2014 [92]. Factors such
as density of population, hospitals, and colleges located near major roads are considered
to project f;n;. We set car charging percentage 1), = 40% and car discharging percentage
Bre = 5% for our base case experimentations. The availability of grid power (g;;;) and
renewable resources (r;;,;) are adopted from [31] and [97], respectively. The charging
and discharging efficiencies of EV’s are both set to be ¥¢ = 9¢ = 90%. The maximum
and minimum SoC and DoD are set to be ¢};, = df. = 0.90 and ¢;,, = d;,, = 0.20,
respectively. Finally, we set unit profit associated with battery discharging cf, = $0.03/hr,
battery storing cost v;, = $0.02/hr, and rated EV battery capacity b = 35 kWh for our

base case experiments.

2.4.2 Analyzing the Performance of Solution Algorithms

This section presents our computational experiences in solving model [LEV] using the
algorithms proposed in Section 2.3. To help the readers follow our solution approaches,
we introduce the following notations to represent the algorithms:

e [CG]: represents the Constraint Generation ([CG]) algorithm (described in Section

2.3.1)
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Figure 2.7: (a) Network representation (original map obtained from [6]) and (b) geograph-

ical demand distribution of Washington DC

o [CG+SAA]: represents a [CG] algorithm where the subproblems of the [CG] are
solved using a Sample Average Approximation ([SAA]) algorithm (described in Sec-
tion 2.3.2)

o [CG+SAA+PHA]: represents a [CG] algorithm where the subproblems of the [CG]
are solved using an integration of [SAA] and a Progressive Hedging ([PHA]) algo-
rithm (described in Section 2.3.3)

o [CG+SAA+PHA+HRY]: represents a [CG] algorithm where the subproblems of the
[CG] are solved using an integration of [SAA] and an enhanced [PHA] algorithm
that uses the enhancement techniques described in Section 2.3.4.1

o [CG+SAA+PHA+HR+RH]: represents a [CG] algorithm where the subproblems of

the [CG] are solved using an integration of [SAA] and an enhanced [PHA] algorithm

55

www.manharaa.com




that uses the enhancement techniques described in Section 2.3.4.1, 2.3.4.1, 2.3.4.2,

and 2.3.4.3

The algorithms presented above are terminated when at least one of the following crite-

ria is met: (a) the optimality gap (i.e., ¢ = |UB — LB|/U B) falls below a threshold value ¢

=0.01, (b) the maximum time limit tzme™** = 36,000 (in CPU seconds) is reached, or (c)

the maximum number of iteration iter™** = 100 is reached. Additionally, to terminate the

progressive heading algorithm, some additional stopping criteria are used (described at the

end of Section 2.3.3). Table 2.1 presents the size of the deterministic equivalent problem

of the [LEV] model. Note that the twelve problem instances, reported in Table 2.1, are

produced by varying the size of |Z|, ||, and |T].

Table 2.1: Problem size of the test instances

Binary Integer  Continuous Total Total
Case [L] T [H| [T] variables variables  variables variables  constraints
1 3 100 24 5 1,500 48,000 48,000 97,500 135,505
2 3 100 24 10 3,000 96,000 96,000 195,000 271,010
3 3 100 48 5 1,500 96,000 96,000 193,500 267,505
4 3 100 48 10 3,000 192,000 192,000 387,000 535,010
5 3 200 24 5 3,000 96,000 96,000 195,000 271,005
6 3 200 24 10 6,000 192,000 192,000 390,000 542,010
7 3 200 48 5 3,000 192,000 192,000 387,000 535,005
8 3 200 48 10 6,000 384,000 384,000 774,000 1,070,010
9 3 306 24 5 4,590 146,880 146,880 298,350 414,635
10 3 306 24 10 9,180 293,760 293,760 596,700 829,270
11 3 306 48 5 4,590 293,760 293,760 592,110 818,555
12 3 306 48 10 9,180 587,520 587,520 1,184,220 1,637,110

The first set of experiments (reported in Table 2.2) provide a computational compar-

ison between CPLEX and three different variants of the rolling horizon heuristic (e.g.,
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[RH1], [RH2], and [RH3]). Note that the subproblems of the rolling horizon heuris-
tic are solved using CPLEX where we set a maximum time limit of 10,800 CPU sec-
onds for each of the subproblems. Results in Table 2.2 indicate that all three variants of
the rolling horizon heuristic demonstrate improvements over CPLEX, particularly as the
problem size increases. On average, algorithm [RH3] provides a 17.78% and 19.07%
faster solution over algorithms [RH1] and [RH2], respectively while dropping the aver-
age optimality gap from 1.24% and 1.20% to 0.91%. Note that rolling horizon heuristic
only provides an upper bound for model [LEV]. Therefore, we use the lower bound from
CPLEX to compute the optimality gap (Gap (%)) for the rolling horizon heuristics 1i.e.,
100 x (UBray — LBcprex)/U Bra %. In summary, the [RH3] seems to offer high qual-

ity solutions consistently within the experimental range.
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The second set of experiments analyze how using different accelerated techniques (de-
scribed in Section 2.3.4.1 and 2.3.4.2) along with three different variants of the rolling
horizon heuristic (i.e., [RH1], [RH2], and [RH3]) speed up the convergence and improve
the quality of the progressive hedging algorithm ([PHA]). We set the scenario size N =
{25, 50} to test the performance of the algorithms. Table 2.3 summarizes the compu-
tational benefits obtained by implementing different enhancement techniques inside the
[PHA] algorithm. Results indicate that implementing different variants of the rolling hori-
zon heuristic substantially improve the performance of the [PHA] algorithm. Clearly, algo-
rithm [PHA+HR+RH3] outperforms the remaining algorithms (e.g., [PHA], [PHA+HR],
[PHA+HR+RH1], and [PHA+HR+RH2]) by solving 22 out of the 24 problem instances
by obeying the pre-specified termination criteria. On average, algorithm [PHA+HR+RH3]
provides a 71.5%, 40.2%, 8.5%, and 9.9% faster solution over algorithms [PHA], [PHA+HR],
[PHA+HR+RH1], and [PHA+HR+RH2], respectively, while maintaining an average op-
timality gap below 1.0%. In summary, algorithm [PHA+HR+RH3] seems to offer high
quality solutions consistently within the experimental range. Note that the results of al-
gorithms [RH1] and [RH2] are not presented in the next two set of experiments, since

algorithm [RH3] consistently produces high quality feasible solutions.
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To see the benefits of using different enhancement techniques in each replication of
the [SAA] algorithm, a third set of experiments is introduced. Figure 2.8 compares the
average runtime spend solving each replication of the [SAA] algorithm using algorithms
[SAA+PHA], [SAA+PHA+HR], and [SAA+PHA+HR+RH3]. For this experiment, a
small problem instance with a problem size |£| = 3, |Z| = 100, |H| =24, |T| =5, N =
10, and M = 40 is considered. From figure 2.8 it is evident that incorporating different
enhancement techniques improves the runtime in each replication of the [SAA] algorithm.
More specifically, use of algorithm [SAA+PHA+HR] reduces runtime significantly over
algorithm [SAA+PHA]. Notice that further reduction in computational time is achieved
by employing the rolling horizon heuristic ([SAA+PHA+HR+RH3]) inside algorithm
[SAA+PHA+HR]. Finally, on average, algorithm [SAA+PHA+HR+RH3] generates a
solution 1.2 and 1.6 times faster than the algorithms [SAA+PHA+HR] and [SAA+PHA],

respectively.

The last set of experiments presents the results from solving model [LEV] using the
algorithms proposed in Section 2.3 (shown in Table 2.4). To test the performance of the
accelerated algorithms, we use Cases 9-12 (the largest test cases from Table 2.1) and vary
the sample size N and replication number M in the [SAA] algorithm to obtain 24 dif-
ferent problem instances. A large scenario size, N’ = 500, is used to evaluate the [SAA]
gap. We do not present the results obtained from CPLEX since CPLEX runs out of mem-
ory while solving all the problem instances reported in Table 2.4. Results indicate that
[CG] is able to solve only 6 out of 24 problem instances by obeying the pre-specified

termination criterions. The performance improved slightly by incorporating [SAA] inside
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the subproblems of the [CG] framework, referred as the [CG+SAA] algorithm, with an
ability to now solve 14 out of 24 problem instances as reported in Table 2.4. The perfor-
mance of the [CG+SAA] algorithm can be enhanced further by solving the subproblems
of this algorithm using the [PHA] algorithm, referred to as the [CG+SAA+PHA] algo-
rithm. With this enhancement, algorithm [CG+SAA+PHA] is now able to solve 20 out
of 24 problem instances while resulting in less than a 1% optimality gap within the spec-
ified time limit. The benefits of using the algorithms become even more obvious when
the heuristic enhancement strategies are incorporated in the [CG+SAA+PHA] algorithm,
referred to as the [CG+SAA+PHA+HR] algorithm. It is observed that with these en-
hancement strategies, the average optimality gap of the [CG+SAA+PHA+HR] algorithm
drops to 0.54% from 0.74% as reported for the [CG+SAA+PHA] algorithm. Furthermore,
the results in Table 2.4 indicate that algorithm [CG+SAA+PHA+HR] is now capable of
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solving 22 out of 24 problem instances by obeying the pre-specified termination crite-
ria. Finally, we observe a significant improvement in computational efficiency when the
rolling horizon heuristic is incorporated in the [CG+SAA+PHA-+HR] algorithm, referred
to as the [CG+SAA+PHA+HR+RH3] algorithm. As is found in Tables 2.2 and 2.3, the
rolling horizon heuristic variant [RH3] provides superior computational performance over
the other two variants (e.g., [RH1] and [RH2]). Thus, the [RH3] algorithm is utilized
inside the [CG+SAA+PHA+HR+RH3] algorithmic framework. With this enhancement,
[SAA] is now able to solve 23 out of 24 problem instances by obeying the pre-specified
termination criteria. We further observe that algorithm

[CG+SAA+PHA+HR+RH3] on average saves 50% in computation time over algorithm
[CG+SAA+PHA+HR] in reporting the optimality gaps presented in Table 2.4. In sum-
mary, algorithm [CG+SAA+PHA+HR+RH3] seems to offer high quality solutions con-

sistently within the experimental range.
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2.4.3 Experimental Results
2.4.3.1 Impact of Load Congestion Cost x;, on System Performance

The first set of experiments analyzes the impact of load congestion cost Y}, on system
performance. For the base case, load congestion cost is set at $10 per hour. Figure 2.9
portrays a relationship between the load congestion cost and the number of charging sta-
tions opened, |Y|. Clearly, the decision to open a station is highly impacted by this cost.
It is observed that as the value of xj, increases the number of charging station opened
decreases. Moreover, it is important to notice that after a certain threshold value of 7§,
the line becomes a flat. This is the critical point after which the model does not open any
additional charging stations and thus the EVs’ demand is satisfied via other distribution

companies by incurring a higher penalty cost.

Number of charging stations

2018 2019 2020 2021 2022
Year

Figure 2.9: Impact of x§, on opening charging station decisions
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We now evaluate the optimal planning decisions for charging stations while considering
a low (i.e., x%, = $5/hour) and a high congestion cost (i.e., x%, = $20/hour) into account.
Figures 2.10 and 2.11 demonstrate the network under low and high load congestion cost.
Results indicate the number of cells with charging station |Y| decreases with an increase in
load congestion cost. For instance, in year 2018, a total of six charging stations are selected
for a low load congestion cost compared with five stations when a higher load congestion
cost is in place. Among the six charging stations, three are selected with a small size
capacity, two of medium size capacity, and the remaining one with large size capacity. On
the contrary, for the high load congestion cost case, among the five charging stations, two
are selected with small size capacity, one of medium size capacity, and the remaining two
with large size capacity. It is important to state that although with the increase in load
congestion cost, the number of charging stations opened decreases; however, the tendency
to select the charging station with higher load capacity increases. This implies that the load
congestion cost directly impacts both the number and size of charging stations.

2.4.3.2 Impact of Electric Vehicle Charging Percentage (7);,) Variability on System
Performance

The second set of experiments investigates how different level of car charging percent-
age 7;, impact system performance. To serve this purpose, we construct three different
realistic scenarios. In the first scenario (base case), we solve the [LEV] model using the
input parameters discussed in Section 2.4.1. The second and third scenarios are created
by setting € to 5% and 50% to represent the low and high car charging percentage levels.

We employ Monte Carlo simulation to generate these scenarios where the car charging
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percentage for each period is independent and varies in the range [,,,(1 — €),7,,(1 + €)]
for each hour h € H in year t € 7. Note that 7, represents the mean car charging per-
centage scenario for each hour i € H in year ¢t € 7. Furthermore, we assume that the car
charging percentage follows a uniform distribution. Figures 2.12 and 2.13 show the de-
ployment of charging stations Y (symbol “A” represents small size charging station, “()”
represents medium size charging station, and “O” represents large size charging station) for
the second and third case scenarios. Results indicate that the number of charging stations
increases with the increase in variability of the car charging percentage under a specific
budget limit. More specifically, the model decides to open an additional 26.83% charging
stations to counter high car charging percentage variability over the low car charging per-
centage variability. It is important to note that for the high variability case of car charging
percentage, the charging stations are distributing their capacities to minimize the overall
system costs (shown in Figure 2.13).

Figure 2.14 illustrates the impact of car charging percentage variability 75, on system
performance. It is evident from the results that, with increasing the level of car charg-
ing percentage variability the amount of power utilized to satisfy the electricity demand
from diversified power sources (e.g., grid, solar, V2G) increases as well. Clearly, model
[LEV] is highly responsive to a number of time-dependent parameters such as solar power
availability, electricity prices, vehicle flows, which severely impact the hourly operational
decisions of a charging station located in cell i € Z of a given year ¢t € 7. For example,
Figures 2.14(a) and 2.14(c) illustrate that the EV power demand is satisfied primarily via

the grid and V2G sources during low cost operating hours and solar power unavailability
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(i.e., from 8:0 P.M. to 8:0 A.M.). On the contrary, as shown in Figure 2.14(b), the demand
is satisfied first via solar and then via grid and V2G during peak operating hours (i.e., from
10:0 A.M. to 2:0 PM.). Figure 2.15 signifies the impact of car charging percentage vari-
ability on the battery-related decisions when the [LEV] model fulfills demand by swapping
batteries in the tested region. It is observed that to cope with high power demand variabil-
ity, the charging stations decide to charge more batteries during off peak hours (shown in
Figure 2.15(c)) which they then discharge during peak hours (shown in Figure 2.15(d)).
Since more batteries are charged during off peak hours, more batteries are required to be
stored in the charging stations during those operating hours as illustrated in Figure 2.15(b).
Note that in Figures 2.14 and 2.15, and the figures introduced later in this manuscript,

5w

s L = ZieI,heH,tET,weQ Pl /1Y

’

o . .
we denote G, = ZieI,heH,teT,weQ PG/ 1Y

Vi = ZieZ,heHﬂteT,weQ P Vi /\Y's By = ZieI,heH,teT,weQ PuBh/|Y s Hipy =

—w
ZieZ,he’H,teT,wEQ PG /1Y ]5 Sie = ZieI,hE”H,tET,weQ PwSie/|S"|; and

F:;Lt = Ziel herteTwea Poling/ Y| be the average consumption of grid, solar, and V2G
power and the number of batteries demand, stored, charged, and discharged in a charging
station located in cell 7 € Z on hour h € H of year t € 7. Moreover, we denote |Y*| as
the number of charging stations opened in cell i € Z of year ¢t € 7. Overall, we observe
that the car charging percentage variability levels highly impact the operational decisions

in the electric vehicle charging stations.
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2.4.3.3 Impact of XS, and )}, on System Performance
The third set of experiments analyzes the impact of average unit power charging re-
quirement for a car A%, and average unit power discharged from a car A%, on system
performance. The average unit power charging requirement for each car at cell ¢ € Z in
hour i € H of year t € T is calculated based on the SoC of the electric vehicles coming
to the stations for charging. Similarly, the average unit power discharged from a car at cell
i € Zinhour h € ‘H of year t € T is calculated based on the DoD of the electric vehicles
discharging at the station. Realizing that the electric vehicles coming to a station, whether
for charging or discharging, will have different levels of remaining power (¢}, ;). (d3,,
d;,,)) in their batteries. To incorporate these scenarios, we construct two cases: () average
unit power charging requirement for each car is considered to be stochastic A,  (where
¢ 1, 1s generated using a uniform distribution between [\, (1 — €), A, (1 + €)]), and (i7)
the average unit power discharged from a car is considered as stochastic A%, (where A%,
is generated using a uniform distribution between [\%, (1 — €), A%, (1 + €)]). We set € =
10% to account for the variations in generating scenarios. It is observed from the results
in Figures 2.16 and 2.17 that considering both \¢,, and A%,  as stochastic increases the
number of charging stations to be opened. For instance, uncertainty in \j,,  increases the
average number of charging station opened decisions by 18.18%. A network representation
for this instance is shown in Figure 2.16. However, we observe that the stochastic param-
eter A%, provides less sensitivity in the decision to open charging stations compared to

A, For example, experiments with the stochastic parameter A%, result in an increase in
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the average number of charging station opened by 9.09%. Figure 2.17 portrays the network

representation for this instance.
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Figure 2.16: Impact of \{;,  on system performance

2.5 Conclusion

This paper proposes a novel optimization framework that integrates both long-term
multi-period investment decisions and short-term hourly operational decisions to design
and manage charging stations operating under power demand uncertainty. A two-stage
stochastic mixed-integer programming model [LEV] is developed that not only decides

the optimal size, location, and timing for opening charging stations over a long-term plan-
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ning horizon, but it also helps with the short-term hourly operational decisions (number
of batteries charged, discharged, and stored, along with usage of V2G, renewable, and
grid power) while simultaneously managing load congestion and supporting the stochastic
power demands at the charging stations. To solve this challenging problem, a highly cus-
tomized hybrid decomposition algorithm is proposed. The hybrid algorithm combines con-
straint generation and sample average approximation method with an enhanced progressive
hedging algorithm. Moreover, the hybrid algorithm incorporates several algorithmic im-
provements such as a penalty parameter updating technique, local and global heuristics,
and different variants of the rolling horizon heuristic. Computational experiments reveal
that the enhanced variant of the hybrid algorithm [CG+SAA+PHA+HR+RH3] is capable
of producing consistently high-quality solutions to realistic large-sized problem instances
within a reasonable amount of time.

We use Washington, DC as a testing ground to evaluate the performance of the model-
ing results. The numerical experiments reveal some managerial insights about the impact
of load congestion on the design and management of charging stations. It is observed
that as the load congestion cost increases, the number of charging stations decreases, but
there is a tendency to open larger capacity charging stations, which reveals that the con-
gestion cost has a substantial impact in charging station investment decisions. Through
investigation it has been also found that the system is highly sensitive towards car charging
percentage variability which results in selection of different location of charging stations.
This ultimately affects the short-term hourly operational decisions of the charging stations.

Furthermore, a sensitivity analysis is carried out considering the impact of uncertainty in

78

www.manaraa.com



the average unit power charging requirement (\{;,,) and the average unit power discharged
(A4 ) from each car on the decision to open charging stations. Results indicate that the
model recommended increasing the number of charging stations opened by 18.18% and
9.09% for the uncertainty in \%,, and \%,,, respectively. The proposed model and results
can help decision makers to develop a future sustainable transportation system that will
add value not only to the economy, but also positively impact the environment we live in.
This work can be extended in several research directions. This study only considers
load congestion; however, in reality congestion may arise in serving EV’s on the charging
stations. Furthermore, this work assumes that the power network is robust and will never
fail. However, power network is frequently impacted by a number of weather-related ex-
treme events (e.g., ice storms, hurricanes, tornados) and/or human-induced events (e.g.,
cyber-attacks). It will be interesting to see how congestion at charging stations can be

managed under facility disruptions. These issues will be investigated in future studies.
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CHAPTER III
AN ENERGY SHARING STOCHASTIC MODEL AMONG ELECTRIC VEHICLE

CHARGING STATIONS AND COMMERCIAL BUILDINGS, AND POWER GRID

3.1 Introduction

Commercial buildings and road transportation sectors utilize a significant portion of
energy which causes global challenges like climate change and resource scarcity. Ac-
cording to the U.S. Energy Information Administration [116], buildings and road trans-
portation sectors consume approximately 43.35% and 28.79% of total energy generated
in the United States, respectively. Regarding indirect emissions, both sectors causes ap-
proximately 78.9% of greenhouse gas (GHG) emissions, of which the building and trans-
portation sectors are responsible for 44.6% and 34.3%, respectively [117]. Recently, the
growing concerns of energy efficiency, dependence on fossil fuels, and environmental im-
pacts have attracted increasing attention on smart buildings and electric vehicles (EVs) in
relation to commercial building and road transportation sectors, respectively.

A smart building is a structure utilizing automated processes to control the building’s
operations including heating, ventilation, air conditioning, lighting, security, and other
systems. According to [114] an undeniable fact about smart building management is the
need to accurately coordinate its electrical and thermal loads. To achieve greater economic

performance and environmental sustainability, an efficient energy management system is
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needed which can optimally coordinate the generation, consumption, and storage of energy
across the available resources.

Electric vehicle sales in the U.S. increased by 22% from 2015 to 2016 and it is an-
ticipated that there will be approximately 2.7 million EVs on the U.S. road by 2020 [56].
Furthermore, it is expected that the EV market share will hit 10% by 2025 [56]. Higher
EV market penetration brings both challenges and opportunities in the area of power grid
(PG) management. Unmanaged charging of EVs might trigger an extreme swell in elec-
tricity demand at peak hours and, consequently, negatively affect the stability and security
of the PG. This being the case, there is an urgent need to manage EV charging activity
efficiently to promote widespread adoption of EVs. Towards this goal, this study investi-
gates optimal operational strategies in relation to smart commercial buildings and electric
vehicle charging stations to optimize individual and integrated operations under systems
uncertainty.

The PG is faced with a variety of challenges from the viewpoint of sustainable devel-
opment of advanced technologies. Therefore, the future power grid, known as the smart
grid, together with smart commercial buildings defines the next-generation of electrical
power generation and consumption systems, respectively, which are characterized by in-
creased utilization of real time communications, information technology, and control and
management in the production, distribution, and consumption of electrical energy. The
aim of employing an upgraded smart grid together with smart commercial buildings is to
allow two-way electricity and information flow between them so that they are capable of

monitoring and responding to demand changes.
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One possible way to alleviate excessive loads on the PG is to design EV charging
stations that integrate renewable energy resources (RES) with vehicle-to-grid (V2G) re-
sources, while planning optimal charging schedules for EVs. A stream of studies have
addressed the integration of the RES with V2G. Liu et al. [68] and Marmaras et al. [77]
study the effects of EV smart charging patterns on power system scheduling, while consid-
ering coordination of wind energy, thermal units, and V2G. Likewise, He et al. [48] present
a global and local scheduling model that is able to make charging and discharging deci-
sions for EVs with the goal of minimizing overall system cost. Another study proposed
by Ortega et al. [88] integrates V2G with power systems in order to achieve better effi-
ciency along with security while operating under an existing power infrastructure. Along
the same line, Haddadian et al. [46, 45] study the effects of considering V2G and RES as
viable resources for the smart grid. Similarly, Fathabadi [33] studies the different effects
of incorporating V2G and RES with a power network. The goal is to identify the best co-
ordination that is effective in sustaining the system while reducing cost and loss of power
production. Jin et al. [59] and Hong et al. [51] propose a stochastic optimization model to
minimize the average cost of utilizing RES under system uncertainty. Another study ad-
dressed by Zhang et al. [134] introduced a scheduling model to minimize the mean waiting
time for charging electric vehicles at EV charging stations equipped with multiple plug out-
lets and the availability of RES. The authors consider arrival time of EVs, fluctuation in
grid power prices, and the RES generation level using a markov decision process (MDP).

The existing studies provided along this line attempt to manage operational decisions for a
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single charging station while there is no considerable attention given to cluster-based EV
charging stations.

Some studies investigate battery related activities at battery swapping stations where an
EV can quickly exchange its depleted battery with a fully-charged battery. Pan et al. [89]
present a two-stage stochastic programming model to determine the optimal location of
battery swapping stations and then make appropriate operational decisions (e.g., the num-
ber of charged and discharged batteries) based upon realized battery demands, EV loads,
and production of RES energies. Discharging batteries to the PG during peak hours is an
important feature of the proposed model. Similarly, Worley and Klabjan [129] present a
dynamic programming model to determine the number of purchased batteries and their
charging time based on dynamic changes in the PG pricing rate. Along the same line, Mak
et al. [74] propose various models that aid the planning process for establishing battery
swapping infrastructure based on a robust optimization framework that considers uncer-
tainty in demand. The authors have determined the potential impact of battery standard-
ization and others technology advancements on the optimal infrastructure establishment
strategy. Nurre et al. [87] develop an integer programming model to determine the optimal
operational decisions (e.g., the number of charged, discharged, and exchanged batteries)
of a battery swapping station over a pre-specified time horizon. Liu et al. [70, 71] propose
an optimization model to determine energy exchange strategies of a battery swapping sta-
tion considering solar energy availability and demand management decisions (e.g., optimal
pricing, and the number of charging and discharging batteries). Recently, Widrick et al.

[127] demonstrates optimal policies for battery swapping station management, integrated
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with V2G capability, to control charging and discharging operations under a non-stationary
stochastic demand for battery swap, non-stationary prices for charging depleted batteries,
and non-stationary prices for discharging fully-charged batteries. Note that most of the
existing studies provided along this line attempt to optimize battery management deci-
sions (e.g., hourly charging, discharging, storing, and exchanging) within a battery facility,
while there is no considerable attention given to the management of cluster-based charging
stations that include capabilities for both battery swapping and EV charging.

In addition to PG load reduction and EV charging station management, another pos-
sible way to reduce the energy consumption from the two main sectors (i.e., commercial
buildings and road transportation) is through vehicle-to-building (V2B) connection capa-
bility. In the V2B integration mode, a smart commercial building can cooperate with an
EV charging station(s) to achieve higher energy efficiency and lower network costs. This
being the case, two-way electricity flow among related buildings and charging stations can
help manage demand fluctuation. Flores et al. [36] show that network costs can be reduced
by integrating a charging station with a commercial or industrial building using a coordi-
nated operation strategy. Karan et al. [60] investigate possible C'Oy emission reduction
and the effectiveness of GHG mitigation strategies based on the current trend of energy us-
age in transportation and building sectors. In another study, Clarke et al. [25] and Stadler
et al. [109] demonstrate how the design of distributed energy systems can be improved
by increasing participation of EVs battery storage, which enhances system flexibility and
facilitates integration of further distributed energy resources such as solar and wind en-

ergy. Pang et al. [90] and Su et al. [111] demonstrate that V2B connections provide some

84

www.manaraa.com



benefits including backup power, high power quality for buildings, and peak shaving in the
PG. Additionally, the authors also state that V2B integration can significantly improve de-
mand side management and power outage. Gough et al. [41] find that participating in both
the peak power and the ancillary services market may prove the most profitable for V2B
connections. Sehar et al. [107] and Liu et al. [69] propose a heuristic operation strategy
for a commercial building microgrid equipped with EVs and a photovoltaic (PV) system
to improve self-consumption capability of PV energy. Erdinc [32] considers both pric-
ing scheme and peak power limiting on demand response, which can further improve the
economic advantage of the home energy management structure by increasing flexibility.
To the best of the author’s knowledge, none of the prior studies have investigated the
effects that integrated cluster-based smart commercial buildings and EV charging stations
will have on operational decisions under uncertainty. To fill this gap in the literature, this
study proposes a novel collaborative energy sharing decision model to study energy shar-
ing among a cluster of commercial buildings and EV charging stations in concert with
the PG. The research problem is formulated as a two-stage stochastic mixed-integer linear
programming (MILP) model and then solved using an enhanced Sample Average Approx-
imation (SAA) method. The efficiency of the SAA method is enhanced by generating
some problem specific valid inequalities. Another contribution is the application of the
proposed MILP model to a real life case study constructed based upon the road network
of San Francisco, California. Additionally, an extensive analysis is performed to inves-

tigate the energy network cost and design under different operating conditions pertaining
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to demand variability and power transaction among network entities. From these results
relevant managerial insights are provided.

An outline of this paper is as follows. Section 3.2 introduces the network structure, the
problem description, and the model formulation, which is followed by problem specific
valid inequalities. The proposed solution approach to solve the mathematical problem is
then discussed in Section 3.3. The first part of Section 3.4 describes the data used to
generate problem instances along with a scenario generation mechanism. The second and
third parts of this section represent, respectively, the performance of the proposed solution
approach and sensitivity analysis results, obtained by varying a number of factors of our
proposed optimization model. Finally, Section 3.5 concludes our study by summarizing
the key managerial insights obtained from this study and offers possible future research

directions.

3.2 Problem Description and Model Formulation

This section determines the energy sharing among all entities at a energy network in-
cluding EV charging stations, commercial buildings, and power grid along with collabora-
tive decision scheme inside each entity. The network structure and the problem description
are provided which are followed by a mixed-integer linear programming (MILP) model to
solve the research problem optimally. The purpose is to minimize the overall network cost
of energy sharing with respect to energy demand of entities, which allows decision makers
for serving demands in an efficient way. In addition, valid inequalities are proposed to

accelerate the solution of the problem.
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3.2.1 Network Structure

The electricity, cooling, and heating demands of commercial buildings along with the
electricity demand of EV charging stations are supplied with respect to limited energy
resources at both inside and outside of network entities. Inside energy resources of a com-
mercial building include the RES, a thermal energy storage (TES), a combined cooling,
heating, and power (CCHP) system (consisting of a power generation unit (PGU), a heat re-
covery subsystem (HRS), an absorption chiller, and a heating exchanger), a battery storage
called commercial-grade battery, and an auxiliary boiler. Likewise, inside energy resources
of an EV charging station include the RES, vehicle-to-grid (V2G), and swappable batter-
ies. Finally, outside energy resources of commercial buildings and EV charging stations
are the PG and transnational energy among related commercial buildings and EV charging
stations. Each building might be connected to more than one EV charging station and vice
versa, while both are connected to only one PG. Figure 3.1 demonstrates the structure of

energy network consisting of a PG, a commercial building, and an EV charging station.

In relation to a commercial building, the PGU provides a portion of the electricity en-
ergy required for the building, while its surplus electricity is stored at commercial-grade
battery. Required thermal energy of commercial buildings might not be satisfied only
through an auxiliary boiler due to its limited capacity. In addition, the PGU is capable of
supplying thermal energy to fulfill thermal demand. Therefore, there is a need to consider
thermal load requirement of commercial buildings into energy network since thermal en-
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EV Charging Station

Energy Flow

Figure 3.1: Energy network illustration of two-way energy flow among network entities

ergy generated by the PGU is the outcome of the PGU electricity generation. The thermal
load requirement of the building is fulfilled from the waste heat of the PGU recovered
through the HRS in the CCHP system and/or a auxiliary boiler. The auxiliary boiler con-
verts fuel into heat to compensate the possible shortage of thermal load on the building. An
absorption chiller and a heating exchanger are used as the cooling and heating components
(the CC and HC, respectively) in the CCHP system, while surplus thermal energy of both
the PGU and the auxiliary boiler is stored at the TES. Therefore, commercial-grade battery
and the TES control any fluctuation as a result of the stochasticity in prime mover of the
electricity and thermal energies, respectively. In relation to an EV charging station, some
vehicles swap their battery, while the others are charged through charging stations.

In relation to transnational energy, each commercial building/EV charging station can
cooperate with an EV charging station(s)/ a commercial building(s) to send its surplus
energy, i.e., V2B integration. This cooperation leads to more energy efficiency in energy

network. Thus, the PG supplies the electric load requirements of commercial buildings and
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EV charging stations if their self-supplied electricity can not satisfy the electric demands
of both; otherwise, their surplus electric energy is sent back to the PG. On the other hand,
if the self-supplied electricity of commercial buildings and EV charging stations along
with the electricity supplied by the PG are not sufficient to satisfy electric load required
for commercial buildings and EV charging stations, then electricity shortage might be im-
ported from outside of the network and, consequently, a penalty cost is considered. As a
result, the electric load of a commercial building is supplied by the PGU, a commercial-
grade battery, the RES, the PG, and V2B connection, while the electric load of an EV
charging station is supplied by the RES, the PG, swapped batteries, and a transnational
energy sent by a commercial building(s). Figure 4.1 demonstrates the structure and energy

flow among network entities along with components of each entity.

3.2.2 Problem description

The research problem is to determine the optimal energy flow through a set of time
periods 7 among a set of commercial buildings B, a set of EV charging stations Z, and
a PG. In addition, optimal operation strategies and collaborative decision scheme among
components of each entity in energy network are determined in each time period. Those
strategies and decisions determine the amount of energy flow through the CCHP system,
the RES, the TES, the boiler, and the commercial-grade battery of each commercial build-
ing, along with the amount of energy flow through V2G and the RES as well as the number

of stored, charged, discharged, and exchanged EV batteries of each EV charging station.
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Figure 3.2: Energy network illustration of energy flow among network entities and com-

ponents

Each commercial building is associated to a subset of EV charging stations 7, Vb € B,
while each EV charging station is associated to a subset of commercial building B; Vi € Z.

The demand of commercial buildings and EV charging stations are modeled as a ran-
dom variable of which probability distribution might not be known in advance. Accurate
prediction, even for small-scale network, is difficult due to the stochastic nature of network
entities and components along with the uncertainty in available resources. This being the
case, a set of scenarios (2 is determined, where each scenario is associated with a posi-
tive probability. Then, the total load including electric, cooling, and heating loads of each
commercial building is determined in each time period under each scenario. In addition,

the total electric load of each EV charging station is determined in terms of the expected
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number of electric vehicles traversed through the charging station in each time period and,
consequently, the percentage of those that requires to be charged under each scenario.
Likewise, expected V2G power availability is determined in terms of the percentage of
electric vehicles required to be discharged in each time period under each scenario. The

assumptions of the research problem are summarized as follows:

e limited fuel consumption capacity of PGU/boiler

e fixed-size RES for commercial buildings/EV charging stations

e maximum and minimum rate of charging/discharging of commercial-grade battery/TES

e initial, maximum, and minimum SoC' level of commercial-grade battery/the TES

e limited capacity of commercial-grade battery/TES

e limited energy flow from PG to all network entities

e limited energy flow from PG to commercial buildings/EV charging stations

o limited energy flow to PG from commercial buildings/EV charging stations

e limited transnational energy among related commercial buildings and EV charging
stations

e limited number of batteries stored in an EV charging station

e limited number of plug-ins for charging/discharging of batteries in an EV charging
station

e limited solar radiation

e clectricity-/fuel-to-carbon emission

!SoC stands for state of charge which is the ratio of available energy to the maximum storage energy in
commercial-grade battery/TES
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3.2.3 Model Fomulation

Since electricity demand is stochastic, a two-stage stochastic MILP model is proposed
to determine energy flow among network entities as well as operation strategies and collab-
orative decisions related to commercial buildings and EV charging stations, under uncer-
tain electricity demand. In the first-stage, energy network is designed in terms of the state
of components of network entities, while energy flow among network entities and inside
components of each entity is determined in each time period under each scenario in the
second-stage of the MILP model. The first-stage decision variables determine the state of

the following entities and components in energy network:

the state of PGU and boiler in each commercial building

the state of charging/discharging of commercial-grade battery/TES in each commer-

cial building

the state of charging/discharging of batteries in each EV charging station

the state of electricity transaction among commercial buildings, EV charging sta-

tions, and the PG

while the second-stage decision variables determine energy flow among the following

entities and components in each time period under each scenario:

electricity transaction among PG, commercial buildings, and EV charging stations

electricity generation by PGU in each commercial building

electricity transaction from PGU to commercial-grade battery and building demand

electricity shortage in each building/EV charging station
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e clectricity storage in commercial-grade battery of each commercial building

e V2G electricity flow in each EV charging station

e fuel consumption by PGU/boiler in each commercial building

e thermal energy consumption by CC/HC and storage by TES in each commercial
building

e charging/discharging batteries in each EV charging station

o full-charged battery storage in each EV charging station

e RES electricity utilization rate by each commercial building/EV charging station

e clectricity utilization for charging/discharging commercial-grade battery in each com-
mercial building

e HRS/boiler thermal energy flow to CC/HC/TES in each commercial building

In the following, the sets and indices, subsets, parameters, and decision variables are
briefly explained and followed by the mathematical formulation. Parameters are intro-
duced by lowercase and Greek letters, while variables are introduced by uppercase letters.
Additionally, the superscript of parameters and variables represent their brief descriptions,
while their subscripts represent their indices.

Sets and Indices:
set of commercial buildings, indexed by b
set of EV charging stations, indexed by ¢

set of time periods, indexed by ¢
set of scenarios, indexed by w

D N s
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Subsets:

7, subset of EV charging stations associated to commercial building b ,CT
B; subset of commercial buildings associated to EV charging station ¢ B, CB

For the sake of simplicity in parameters and decision variables definitions, commercial

buildings and EV charging stations are summarized as buildings and charging stations,

respectively.

Commercial Building Parameters:

wggu /¢go
sh9"[she

npgu/nbo

Cf

aPIv, prov

qe—i-/ge—&-
qef/ge—
b3/ stes
s /s

tes+y tes—
SZt /54y
s
Sb0
tes
Sb0

PGU/boiler startup cost in building b

PGU/boiler fuel consumption capacity in building b

PGU/boiler system efficiency

unit fuel price for PGU/boiler ($/gl)

PGU electricity generation efficiency

RES size in building b

total demand load in building b in time period ¢ under scenario w
percentage of total demand load for electric demand in time period ¢
percentage of total demand load for cooling demand in time period ¢
percentage of total demand load for heating demand in time period ¢
commercial-grade battery charging/discharging efficiency

TES charging/discharging efficiency

CC/HC efficiency

grid power available for building b in time period ¢

maximum power flow to PG from building b in time period ¢
maximum/minimum percentage of commercial-grade battery charging
capacity

maximum/minimum percentage of commercial-grade battery discharging
capacity

maximum/minimum percentage of TES charging capacity
maximum/minimum percentage of TES discharging capacity
commercial-grade battery/TES capacity in building b
maximum/minimum SoC of commercial-grade battery in building b in time
period ¢

maximum/minimum SoC of TES in building b in time period ¢

initial SoC of commercial-grade battery in building b

initial SoC of TES in building b

94

www.manaraa.com



EV Charging Station Parameters:

fi  electric vehicle flow around charging station ¢ in time period ¢

0y, percentage of electric vehicles charged at an EV charging station in time period ¢
under scenario w

B:  percentage of electric vehicles discharged at an EV charging station in time
period ¢

(o unit V2G electricity energy cost in time period ¢ ($/kWh)

unit storage cost per battery in time period ¢

a; RES size in charging station ¢

u;  maximum number of available batteries in charging station ¢

b¥  grid power available for charging station ¢ in time period ¢

be»  maximum power flow to PG from charging station 4 in time period ¢

A average unit power required to charge each electric vehicle (kWh)
7y average unit power obtained from discharge each electric vehicle (kWh)
¢/  number of plug-ins available for charging batteries in charging station i

out  pnumber of plug-ins available for discharging batteries in charging station 4

Other Parameters:

grid power available in time period ¢

9, grid power available for all buildings in time period ¢

grid power available for all charging stations in time period ¢

Xp; ~Mmaximum power flow to charging station ¢ from building 0 in time period ¢

X5 maximum power flow to building b from charging station ¢ in time period ¢

¢ unit electricity purchasing price from PG in time period ¢ ($/kWh)

c; unit electricity selling price to PG in time period ¢ ($/kWh)

c unit electricity transaction price among any pair of building & charging station
in time period ¢ ($/kWh)

c®  unit penalty cost for a power shortage in time period ¢ ($/kWh)

carbon emission tax ($/ton)

v electricity-to-carbon conversion factor

vft¢ fuel-to-carbon conversion factor

(¢ solar radiation available in time period ¢

RES electricity generation efficiency

T energy conversion factor (kWh to Btu)

P  probability of scenario w

In the following, the first- and second-stage decision variables of two-stage stochastic
MILP model divided in terms of commercial buildings and EV charging stations are briefly
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Commercial Building Decision Variables:
First-stage Decision Variables:

4
(S
Sbt
e
i
Sbt
b—
Sbt
p+
Yy
p—
Yy
Yyt

bit

1 if PGU state is on in building b in time period ¢; 0 otherwise

1 if boiler state is on in building b in time period ¢; 0 otherwise

1 if TES charging state is on in building b in time period ¢; O otherwise

1 if TES discharging state is on in building b in time period ¢; 0 otherwise
1 if commercial-grade battery charging state is on in building b in time
period t; O otherwise

1 if commercial-grade battery discharging state is on at building b in time
period t; O otherwise

1 if electricity transaction state from PG is on in building b in on in time
period t; O otherwise

1 if electricity transaction state to PG is on in building b in on in time
period ¢; O otherwise

1 if electricity transaction state to charging station ¢ is on in building b in time
period t; O otherwise

Second-stage Decision Variables:

H btw

btw

X

btw

electricity flow from PG to building b in time period ¢ under scenario w
electricity flow from building b to PG in time period ¢ under scenario w
electricity flow from PGU to commercial-grade battery in building b

in time period ¢ under scenario w

electricity flow from PG to commercial-grade battery in building b

in time period ¢ under scenario w

electricity flow from building b to charging station ¢ in time period ¢ under
scenario w

RES generated electricity in building b in time period ¢ under scenario w

PGU generated electricity in building b in time period ¢ under scenario w
power shortage in building b in time period ¢ under scenario w

PGU fuel consumed in building b in time period ¢ under scenario w

boiler fuel consumed in building b in time period ¢ under scenario w

electricity flow from building b to its commercial-grade battery in time period ¢
under scenario w

electricity flow to building b from its commercial-grade battery in time period ¢
under scenario w

commercial-grade battery stored electricity in building b in time period ¢

under scenario w

TES stored thermal energy in building b in time period ¢ under scenario w
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ce

lzltw

e

X btw
cc

btw

sc
btw

ch
btw

sh
btw

cs
btw

thermal energy charged in building b in time period ¢ under scenario w
thermal energy discharged in building b in time period ¢ under scenario w
thermal energy flow from HRS and boiler to CC in building b in time period ¢
under scenario w

thermal energy flow from TES to CC in building b in time

period ¢ under scenario w

thermal energy flow from HRS and boiler to HC in building b in time period ¢
under scenario w

thermal energy flow from TES to HC in building b in time period ¢

under scenario w

thermal energy flow from HRS and boiler to TES in building b in time period ¢
under scenario w

EV Charging Station Decision Variables:
First-stage Decision Variables:

Yt
Vi~
vy
Vi

Yo

ibt

1 if battery charging state is on in charging station 7 in time period ¢;

0 otherwise

1 if battery discharging state is on in charging station ¢ in time period ¢;

0 otherwise

1 if electricity transaction state from PG is on in charging station ¢ in time period
t; 0 otherwise

1 if electricity transaction state to PG is on in charging station ¢ in time period t;
0 otherwise

1 if electricity transaction state to building b is on in charging station ¢ in time
period t; O otherwise

Second-stage Decision Variables:

cs
itw
crr
itw

Bitw
V[/itw

Sitw

electricity flow from PG to charging station ¢ in time period ¢ under scenario w
electricity flow from charging station ¢ to PG in time period ¢ under scenario w
electricity flow from V2G to charging station ¢ in time period ¢ € 7 under
scenario w

electricity flow from charging station ¢ to building b in time period ¢ under
scenario w

power shortage in charging station 7 in time period ¢ under scenario w

RES generated electricity in charging station ¢ in time period ¢ under scenario w
swapped batteries in charging station ¢ in time period ¢ under scenario w
full-charged available batteries in charging station ¢ in time period ¢ under
scenario w

charging batteries in charging station ¢ in time period ¢ under scenario w
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Py, discharging batteries in charging station ¢ in time period ¢ under scenario w

Mathematical Model
The objective function minimizes energy flow costs through available energy resources to
satisfy the demands of network entities. The first-stage decisions made prior to realizing
any stochastic event (e.g., entity demand) correspond to the state of planning and schedul-
ing of network entities and components in each time period, while the second-stage deci-
sions include determining the energy generation resources under each scenario in terms of
the first-stage planning and scheduling made in each time period. The resource decisions
include the amount of power dispatched from energy generation resources in each time
period. The aim is to minimize the first-stage costs and the expected value of the random
second-stage costs across all possible entity demand scenarios. The objective function of

the two-stage stochastic MILP model [BEV] is proposed as follows:
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Second-stage commercial building thermal energy cost
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SoY ou( 3 O S+ W) )

teT wed €T

J

~
Second-stage EV charging station battery cost

In [BEV], the first-stage objective function represents the cost associated with the PGU
and boiler startup, while the second-stage objective function represents the cost associated
with the PG, commercial buildings, and EV charging stations, i.e., the energy network cost.
Electricity flow to the PG from commercial buildings and EV charging stations determine
the PG cost, i.e., commercial buildings and EV charging stations benefit. Electricity flow
to a particular commercial building from the PG, related EV charging station(s), the RES,
commercial-grade battery, and the PGU is considered as the electricity cost of the com-

mercial building. In addition, thermal flow to the CC and HP from the HRS, boiler, and the
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TES determines the thermal energy cost of the commercial building. Also, the PGU and
boiler fuel consumption are considered as part of the commercial building cost. Electricity
flow to a particular EV charging station from the RES, V2G, and the PG is considered
as the electricity cost of the EV charging station. In addition, electricity flow to available
discharged batteries from the PG is considered as the electricity cost of the EV charging
station. The cost of electricity carbon emission and power shortage account for each com-

mercial building and EV charging station.

Constraints Associated with Commercial Buildings

Constraints for Electric Load Balance: Constraints (3.2) guarantee electricity sup-
ply for uncertain electric demand of each commercial building. As mentioned, electricity
resources include the RES, commercial-grade battery, the PGU, related EV charging sta-
tions, the PG, and an external resource(s) as power shortage compensation. Extra supplied
electricity is considered as power storage on commercial-grade battery as well as power

flow to the PG and related EV charging stations.

u ch
Hy, + Zoh + XP0 + ™ X, + 3 My, + Ul = wfdyw + Hyp, + 77““ + @30

cb
€Ty

> M, WeBteT weq

1€Ty
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Constraints (3.2) restrict electricity flow to an EV charging station from a related com-
mercial building. Constraints (3.3) indicate there is one-way electricity flow among a re-

lated pair of commercial building and EV charging station in a particular time period.

M), < xXEYE YoeBiieIteT,wel (3.2)
Vil +Yer < 1 YheBiieI,teT, (3.3)

Constraints for Thermal Energy Load Balance: Constraints (3.4) and (3.5) guaran-
tee cooling and heating supply for cooling and heating loads of each building based upon

thermal energy flow from the HRS, boiler, and the TES.

(@t + Qi) = Ty Vo EBt €T wel 3.4)

Qi + Qi) = Trldy, VbEBtET,weQ (3.5)

Constraints for the RES: Constraints (3.6) restrict the utilization of renewable en-
ergy to the RES size, electricity generation efficiency, and the amount of solar radiation

absorbed by the RES.
20 < e’ VbeBiteT,weQ (3.6)

Constraints for Commercial-grade Battery: Constraints (3.7) through (3.13) deter-
mine the state of commercial-grade battery in each time period under each scenario. Con-
straints (3.7) indicate that a commercial-grade battery cannot be charged and discharged
simultaneously in a particular time period. Constraints (3.8) restrict the electricity storage
in a commercial-grade battery, while constraints (3.9) and (3.10) determine stored battery

electricity based on its previous storage along with the amount of charged or discharged
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battery electricity in terms of battery charging and discharging rates. Constraints (3.11)
and (3.12) restrict the amount of charged and discharged battery electricity. Finally, con-
straints (3.13) determine the amount of stored battery electricity in terms of electricity flow

obtained from the PGU, the PG, and its related building.

Sht 48 < 1 VbeBiteT (3.7)
spshT < X < skt WheBiteT,weQ (3.8)
S S XCbUJ dew
Xp, — stishs = %—ﬁ Vb€ B,w e (3.9)
Xwa XdlZu
Xb o —Xh,, = n’jb - % VbeBt>2teT,weQ  (3.10)
bs b+ qb+ lefw bs=b+ Qb+
sy°q" Sy SW < s°qTS, VbeBiteT,we (3.11)
bs b— qQb— XlilZu bs=b— qQb—
0q Sy < —3f < s’ Sy, VbeBteT,we (3.12)
1
ch
Xb, = XP 4+ X9+ n’j;“ VoeBteT,weQ (3.13)

Constraints for the PGU and Boiler: Constraints (3.14) and (3.15) restrict the PGU
and boiler fuel consumption with respect to their maximum capacity. Constraints (3.16)
restrict electricity flow to commercial-grade battery and corresponding building in terms of
the PGU fuel consumption and electricity generation efficiency. Constraints (3.17) restrict
thermal energy flow generated by the PGU and boiler to the CC, HC, and TES. It is worth

noting that extra thermal energy is stored at the TES.
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B < SZP YheBiteT,we (3.14)
Bl < skezh VheBiteT,weQ (3.15)
X 4 XPOr = (BY _prou P JaPt Yhe Bite T,weQ  (3.16)

b+ Qi+ Qs < PMBp, 0By, VbeBteT,weQ  (3.17)

tw

Constraints for the TES: Constraints (3.18) through (3.25) determine the TES state
in each time period under each scenario. Constraints (3.18) indicate that the TES cannot
be charged and discharged simultaneously in a particular time period. Constraints (3.19)
restrict the thermal energy storage in the TES, while constraints (3.20) and (3.21) determine
thermal energy storage based on its previous storage along with the amount of charged
or discharged TES thermal energy in terms of the TES charging and discharging rates.
Constraints (3.22) and (3.23) restrict the amount of charged and discharged TES thermal
energy. Constraints (3.24) indicate that the thermal energy flow provided by the TES to
the CC and HC is restricted by its discharging rate. Finally, constraints (3.25) indicate that

thermal energy flow from the HRS and boiler to the TES is restricted by its charging rate.

Sgt+S; < 1 YWeBteT (3.18)
sifsies < Xp < sieslet Whe Bt e T,weQ (3.19)
Xce Xde
X — 81755 = —22 - 2w VheBuwel (3.20)
nce /’7 €
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X5, — X5, = );btw — );f}w VbeBt>2teT,weQ (321

sy gt Sy < );‘z“ < s°¢tSEt VbeBite T,weQ (3.22)
siqe S < );gt“ < segTSeT WheBteT,weQ (3.23)
Qi = )%Z“ VoeB,teT,we (3.24)

% = @, VWeBteT,we (3.25)

Constraints Associated with EV Charging Stations

Constraints for Electric Load Balance: Constraints (3.27) guarantee electricity sup-
ply for uncertain electric demand of each EV charging station. As mentioned, electricity
resources include the RES, full-charged batteries, related commercial buildings, the PG,
V2@, and an external resource(s) as power shortage compensation. Total electricity de-
mand in a given time period under a particular scenario is determined in terms of electric
vehicle flow, percentage of charged vehicles, and average unit power required to charge
each vehicle. Extra supplied electricity is considered as power flow to the PG and related

commercial buildings.

ztw cht?;: Z bztw + V;tw + ABZ’tW + Uzii} = Adtw-flt + Z zbtw (326)
beB; beB;

+G,, VieZ,teT,wel

Constraints (3.27) restrict electricity flow to a commercial building from a related EV

charging station. Constraints (3.28) restricts electricity flow of V2G at an EV charging
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station. Total electricity supplied by V2G in a given time period under a particular scenario
is determined in terms of electric vehicle flow, percentage of discharged vehicles, and

average unit power required to discharge each vehicle.

My, < XoYi~ VieLbeBiteT,we (3.27)

Constraints for the RES: Constraints (3.29) restrict the utilization of renewable en-
ergy to the RES size, electricity generation efficiency, and the amount of solar radiation

absorbed by the RES.

Z3" < ayun” VeI, teT,we (3.29)

itw

Constraints for EV Charging Station Batteries: Constraints (3.30) through (3.37)
determine the state of utilized batteries in each time period under each scenario. Con-
straints (3.30) represents a restricted set of full-charged batteries at each EV charging sta-
tion at the beginning of the planning horizon. Constraints (3.31) indicate that batteries
cannot be charged and discharged simultaneously in a particular time period. Constraints
(3.32) and (3.33) restrict the number of charging and discharging batteries by the number
of plug-ins available at each EV charging station. Constraints (3.34) determine the number
of available full-charged batteries in terms of previous inventory along with the number
of charging/discharging batteries and battery demand. Constraints (3.35) indicate that no
battery is charged during the first hour of the planning horizon since constraints (3.30) guar-

antee full-charged batteries at the first time period. Constraints (3.36) restrict the number
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of charging batteries to the number of depleted batteries. Finally, constraints (3.37) restrict

the number of discharging batteries and battery demand to available full-charged batteries.

Witw

Vit + Vi

Sitw

Pty

Witw — Bitw — Pitw + Sitw
Silw

Sitw

Bitw + -Pitw

IA

IN

IN

IN

IN

u; YieZl,wef

1 VieZteT

@Yt VieLte T,weQ
@S VieLteT,we

Wittew VieZ te T\|T|,we

0 VieZ,wel

Us

VVitw

Constraints Associated with Power Grid

VieZteT,wel)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

— Wi VieZ,t>2teT,we (3.36)

(3.37)

Constraints (3.38) through (3.46) determine the PG state in each time period under each

scenario. Constraints (3.38) restrict the available grid power utilized for all commercial

buildings and EV charging stations, while constraints (3.39) and (3.40) restrict the avail-

able grid power utilized only for all commercial buildings and EV charging stations, re-

spectively. Constraints (3.41) indicate that there is one-way electricity flow among the PG

and a commercial building in each time period, while constraints (3.42) and (3.43) restrict

electricity flow among the PG and a commercial building under each scenario. Likewise,

constraints (3.44) indicate that there is one-way electricity flow among the PG and an EV
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charging station in each time period, while constraints (3.45) and (3.46) restrict electricity

flow among the PG and an EV charging station under each scenario.

> GhAD HE, < gl VteT,weQ (3.38)
€L beB
Y Hj, < g” VteT,weQ (3.39)
beB
> Gh, < gf eTweq (3.40)
€L
YEE4YET < 1 WbeBiteT (3.41)
HY, < WY YheBiteT,weQ (3.42)
Hy, < P vbeBteT,weQ (3.43)
Y 4+Y)T <1 VieLteT (3.44)
GhH, < WPYPT VieIteT,weQ (3.45)
Gr, < bIYP VMieIteT,we (3.46)

Binary and Non-negativity Constraints
Constraints (3.47) define binary restriction for the first-stage decision variables. Likewise,
constraints (3.48) and (3.49) define standard integrality and non-negativity constraints for

the second-stage decision variables, respectively.
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23y Zog i St Sul s S Y Y
Vi YT Y Y Y Yy € {01}
VbeB,ieZ teT (3.47)
Witw, Bitw, Sitw, Pitww € Z>o
VieZ,teT,wel (3.48)

+ — + — + — crr  rzbrr pgu
Gitwv Gitwv Hbtuﬂ Hbtw’ Mbitw’ Mz’btwv Vitw, Zitw’ thwv thw )

bd b0 cb db pb gb b ce de
Bbtw’ Bbtw7 thw thw? thw’ thw’ thw thw’ thw?

Y
o

itw?

e bd cs cc sc ch sh cs
X btw> Ubtw? U btw’ Y btw? ¥ btw? ¥ btwr ¥ btw

VieZ,beBteT,weq (3.49)

3.2.4 Valid Inequalities

Regarding valid inequalities, we attempt to accelerate the solution of the problem using
both model [BEV] and an optimization algorithm proposed in Section 3.3. Valid inequal-
ities are able to enhance a linear programming relaxation of the problem. Readers are
referred to the studies [26] discussed in detail about valid inequalities. Inspired from those

studies, the following valid inequalities are developed.
e A commercial-grade battery at building b is not capable of discharging electricity

energy in a given time period ¢ if no charging is made up to time period (¢ — 1).

dooSsgt o= S WheBiteT (3.50)
J<e-1)
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e The TES at building b is not capable of discharging thermal energy in a given time
period ¢ if no charging is made up to time period (¢ — 1).

Y S = S WheBteT (3.51)

J<(t-1)

e A battery(es) at EV charging station b is not capable of charging electricity energy
in a given time period ¢ if no discharging is made up to time period (¢t — 1).

dYE > Yyt WieTLteT (3.52)

J<(t-1)

e There is no thermal energy flow to the TES, HC, and CC if the PGU and/or boiler
state is not switched to on at building b in a given time period ¢ under a particular

scenario w.
by Qb+ Qb < PSS ZE 4 0s0Zy, VbeBiteT,weQ (3.53)

3.3 Solution Methodology

Since model [BEV] contains binary decision variables in the first-stage as well as in-
teger and continues decision variables in the second-stage, it is very challenging to solve
using commercial solvers such as CPLEX. In other words, model [BEV] is not capable of
obtaining optimal solutions for industry-size problems and, consequently, there is a need to
propose an optimization algorithm to obtain the optimal/near optimal solutions in reason-
able computational times. This being the case, an efficient Sample Average Approximation
(SAA) method is proposed to generate high-quality solutions for model [BEV] effectively.
The performance of the SAA method is also enhanced by considering proposed valid in-

equalities.
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3.3.1 Sample Average Approximation

Electricity and thermal demands of commercial buildings, dy,,, differ significantly due
to different timetable of working hours, usage intensity of equipment and lighting facili-
ties, and air conditioning system data. Likewise, the percentage of electric vehicles charged
in EV charging stations, 0, differs significantly due to variable electric vehicle flows at
EV charging stations. Therefore, an extremely large number of scenarios is required to
investigate variations in demand. Since the research problem is NP-hard, computational
time increases significantly when a large set of scenarios is considered. To remedy this
problem, the SAA method is proposed so that the expected energy network cost of the
stochastic problem is approximated by a corresponding sample average function. The
problem is solved by deterministic optimization techniques under the sample average ap-
proximation. The procedure is repeated with different samples until a stopping criterion
(a pre-determined optimality gap) is satisfied. The SAA method has been successfully im-
plemented for solving large-scale supply chain network flow related problems ([105], [76],
[99], and [120]). In relation to the convergence properties and statistical performance of
the SAA method, readers are referred to Kleywegt et al. [62], Mak et al. [75], as well as
Norkin et al. [85] and [86].

Electricity demand of commercial buildings, dj,, follows a normal distribution for
each commercial building b at time period ¢. Likewise, the percentage of electric vehicles
charged in EV charging stations, ¢, follows a normal distribution for each time period

t. The SAA method generates set N of random samples n with realizations of uncertain
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parameters (n € N and |N| < [€]) to approximate the objective function value of the

second-stage problem as follows:

EIQ(Z,w)] = 1 3 Q(Z,w")

neN

where (Q(Z,w™) is a solution of the second-stage problem for a given value of Z under

scenario w”. Problem [BEV] is now approximated by the following SAA problem:

Minimize {Z’;\}” = Z Z <¢§gqut + ¢2025t> + % Z Q(Z,w”)}

teT beB neN

As the sample size increases, the optimal solution approximated by the above equation
converges with probability one to an optimal solution of the original problem [BEV] [62].
By solving the SAA problem within an absolute optimality gap § > 0, the sample size | V|
is estimated to guarantee an e-optimal solution to the true problem with probability at least

equal to (1 — «) as follows:

3 2
Nz 2 (1B T 0g2) ~ loga

where € > 4, a € (0,1), and 02, is a maximal variance of certain function differences
[62]. It is worth noting that choosing sample size |N| is a trade-off between the solu-
tion quality and required computational time. The above equation provides a conservative

sample size estimation for practical applications. In each iteration of the SAA method,

valid statistical lower and upper bounds are provided for the original problem [BEV] and
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the process terminates when the gap between aforementioned bounds falls below a pre-
determined threshold value. The following steps briefly summarize the SAA method to

solve problem [BEV].

Step 1: Generate set M of independent commercial building load scenarios, each
of size |N|, ie., {dpuw , Dy , ...,dbwm}, Ym € M,b € B,t € T. Likewise,
generate set M of independent percentage scenarios of electric vehicles charged in
EV charging station, each of size | V|, i.e., {1 , 0wz , ..., 5@15‘}’ VYme M,teT.
Then, solve the corresponding SAA for each generated sample consisting of |N/|
realizations of independently and identically distributed (i.:.d.) random scenarios.
The optimal objective function value and the optimal solution are denoted by Z%;
and Z,,, respectively. The optimal objective function value of the m!" replication is

obtained as follows:

Zn=> Y (wﬁ’g“Zi + wz?”Zé’t) + % > Q(Z,w")

beB teT neN

Step 2: Compute the average of all optimal objective function values obtained from

the SAA problems, Z% as follows:

_ 1
M _ m
ZN_WZZN

meM
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where, Z) provides a statistical lower bound on the optimal objective function value
for the original problem [BEV] [86]. Since Z}, 2%, ..., Z} generated samples are

independent, the corresponding variance of ZY, i.e., U%M, is given by:
N

2 o 1 M M 2
T = T & (& %)

meM

Step 3: Generate set N’ including larger sample size (|[N’| > |N|) to compute

the estimated optimal objective solution of the SAA method [62]. This estimator,

which is the upper bound of the optimal solution on the generated sample size | N’

’

is obtained by one of the solutions of Zys as follows:

Z(Zar) = ) (wfg“Zé'; + wZ‘)Zé’t) tm Q@)

beB teT neN’

In each iteration, the estimator upper bound Zy-(Zy;) is updated. The variance of

this estimator upper bound is calculated as follows:

0_2 5 _ 1 PGU rzp bo r7b 5 W) —
N’(ZM) <|N, _ 1|>(’N/D Z {ZZ <¢b th_‘_,lvbb th) +Q(Z]W7 )

neN’'  beB teT

zN/(ZM)}2

Step 4: Compute the SAA gap, Gapy, ), and the variance of this gap, U2Gap(N,N/>’

using the estimators determined in Steps 2 and 3.
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Gap(N,N/)(Z) = ZN’(ZM) - 2]\1\/?[

2 2 (5 2
O-Ga‘p(N,N/) — O-N’(ZM) + O‘z%j

The confidence interval for the optimality gap is then calculated as follows:
1/2
2av(n) = B+ 20 o) + oy |

with z,:= ®71(1 — «a), where ®(z) is the cumulative distribution function of the

standard normal distribution.

Step 5: Define the best solution among the solutions of Z,;(Vm € M) that represents

the lowest upper bound Z (2M>.

3.4 Computational Study and Managerial Insights

This section focuses on solving model [BEV] using the SAA method to draw man-
agerial insights derived from a real life case study. This section is composed of three
sub-sections. First, a brief description of the data used to generate problem instances along
with scenario generation are provided. Second, the efficiency and effectiveness of the
MILP model and proposed SAA method are evaluated for the energy network problem
with respect to valid inequalities. Finally, a case study, using the city of San Francisco,
explores aspects of energy management that makes use of the connections between limited
energy resources to satisfy network demand. In addition, the study analyzes the impact

of demand variability, power transaction limit, power grid disruption, and the renewable
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resource size on the overall energy network design and cost. Managerial insights are de-
rived from this case study in the form of perspective and understanding. All numerical
experiments are coded in GAMS 24.2.1 [39] on a desktop computer equipped with an Intel
Core 17 - 3.50 GHz processor with 32 GB of RAM. The optimization solver used is ILOG

CPLEX 12.6.

3.4.1 Data Description

Since San Francisco has a strong-growing electric vehicle population, it was chosen
as a testing ground to visualize and validate the modeling results. In addition, it has a
reputation as being one of the nation’s most environmentally conscious cities. Several
factors contribute to this status, not the least of which San Francisco also happens to be
one of the wealthiest cities in the country. Furthermore, San Francisco offers some of the
most electric vehicle-friendly incentives for EV owners at both the state and local levels.
For example, under the Bay Area Air Quality Management District’s EV Rebate Program
public agencies can receive an additional $2,500 toward the purchase of an electric vehicle
and $1,000 for a plug-in hybrid electric vehicle.

Surplus electricity from one or more commercial buildings might be sent to a nearby
EV charging station(s) and an EV charging station might share its surplus electricity with
nearby commercial buildings, as well for higher energy efficiency. This being the case,
within San Francisco, 11 fast EV charging stations (|Z| = 11) and 43 commercial buildings
(|B] = 43) located near those charging stations were selected for the real life case study

[93]. The goal is to determine the impact of parameter changes on the overall energy
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network cost. Figure 3.3 demonstrates the distribution of fast EV charging station locations

along with their nearby commercial buildings.
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Figure 3.3: EV Charging station distribution with nearby commercial buildings in San

Francisco

Information from a 2010 report on uses of solar radiation in San Francisco is used as
input for determining available electricity obtained from solar panels during a day [83]. In
addition, the size of the solar panels used for commercial buildings (a;) and EV charging
stations (a;) are assumed to be 100 m? and 75 m?, respectively. Commercial and industrial
time-of-use (TOU) rates are adopted from [104] to determine unit electricity transaction
price among network entities (c;, ¢; , and ct). Based on the TOU rate, 1:00 P.M. through
8:00 P.M. are the peak hours of electricity usage where the electricity transaction price
is high, while 5:00 A.M. through 12:00 P.M. along with 9:00 PM. through 11:00 PM.

are the sub-peak hours of electricity usage where the electricity transaction price is lower
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compared to peak hours. All other hours throughout a day are off-peak hours with the
lowest price. Figure 3.4 represents different electricity usage hours. The hourly electricity

pricing plan for V2G (/) is obtained from [91].

Off-peak hours Sub-peak hours Peak hours Sub-peak hours
— T
IR 5 6 | 7 | 8 9 | 1011|1248 048 ge ST 4R 15205 2] 22 | 23 (N
One day - 24 hours
Off-peak hour Sub-peak hour Peak hour

Figure 3.4: Electricity usage hours

The hourly projected commercial building demands (dy,,) are determined in terms of
the TOU rate, while the hourly projected flow of electric vehicles around each charging
station (f;;) is determined based on the number of electric vehicles that were available
in San Francisco in 2016 [92]. Other factors such as population density along with the
number of hospitals and colleges located near major roads are considered to project EV
flow (f;;). Then, in terms of electric vehicle flow around EV charging stations, in this
study the percentage of electric vehicles charged in a particular time period (d;,) is set
to 40% for the base case, while the discharging rate ((3;) is set to 5%. The average unit
power requirement for charging each car ()\) is set to 25.7 kWh. Similarly, average unit
power discharged from each car (v) is also set to 25.7 kWh. The daily fuel consumption
capacity of the PGU is set to 200 gl. The grid power available for each commercial building

(b) and EV charging station (b) is set to 200 kWh and 250 kWh, respectively. The
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commercial-grade battery capacity (s2%) is set to 100 kW. The maximum power transaction
between related commercial buildings and EV charging stations (i.e., X%, and x%,) are
set to 100 kWh. For simplification purposes, the minimum and maximum percentages of
SoC/charging capacity/discharging capacity of a commercial-grade battery/TES are set to
20% and 90%, respectively, while their charging and discharging efficiencies () are both
set to 90%. Unit penalty cost of power shortage (c;®) is determined in terms of the unit
production power of other resources, i.e., ¢ > maz{c;",c!,c/}. Finally, the unit storage

cost of a battery in an EV charging station (¢;) is set to 0.02 $/hr.

3.4.2 Computational Performance of the Proposed Algorithms

The efficiency and effectiveness of the SAA method proposed in Section 3.3 is eval-
uated by solving model [BEV]. To simplify the definition of the proposed solution ap-
proaches and obtained results, the following notations are provided.

e [CPLEX]: Model [BEV] solved by CPLEX

e [CPLEX-VI]: Model [BEV] accompanied by valid inequalities and solved by CPLEX

o [SAA]: The SAA method

e [SAA-VI]: The SAA method accompanied by valid inequalities for samples with

small-size scenario

In relation to the research problem, there are no benchmark instances available in the
literature. Hence, a new set of problem instances are generated with respect to a real
life case study and problem size, impacting the computational time of [CPLEX-VI]. For

the purpose of comparison, three sets of problem instances have been generated: small-,
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medium-, and large-sized instances, where the case study proposed for San Francisco is

considered a medium-size problem. The ratio of the number of commercial buildings to

the number of EV charging stations is set to four for all problem sizes, i.e., |

|B]

= 4. In other

words, each commercial building is connected to four EV charging stations on average. So,

for example in the case of a small size problem ratios of 8 buildings to 2 charging stations,

12to0 3, 16 to 4, 20 to 5 and 24 to 6 are used for the various instances in that set. In addition,

the time period spans used are 12 and 24 hours (around one day) for small-size instances,

24 and 72 hours (1 and 3 days) for medium-size instances, and 168 and 360 hours (7 and

15 days) for large-size instances. Table 3.1 represents generated instances for each set of

problem sizes in terms of |Z|, |B|, and |7 |, where the deterministic equivalent for model

[BEV] is indicated based on the number of variables and constraints for each generated

case.

Table 3.1: Problem size of the deterministic equivalent of the model based on the number

of variables and constraints

. Variables Total

Sizes Instances 171 |51 71 Binary Integer Continuous Total constraints
1 2 8 12 480 96 2,520 3,096 5,754

2 2 8 24 960 192 5,040 6,192 11,526

3 3 12 12 720 144 4,068 4,932 8,901

4 3 12 24 1,440 288 8,136 9,864 17,829

Small 5 4 16 12 960 192 5.808 6,960 12,240
6 4 16 24 1,920 384 11,616 13,920 24,516

7 5 20 12 1,200 240 7,740 9,180 15,771

8 5 20 24 2,400 480 15,480 18,360 31,587

9 6 24 12 1,440 288 9,864 11,592 19,494

10 6 24 24 2,880 576 19,728 23,184 39,042

1 8 32 24 3,840 768 29,376 33,984 55,104

2 8 32 72 11,520 2,304 88,128 101,952 165,456

3 9 36 24 4,320 864 34,776 39,960 63,711

4 9 36 72 12,960 2,592 104,328 119,880 191,295

Medium 5 10 40 24 4,800 960 40,560 46,320 72,702
6 10 40 72 14,400 2,880 121,680 138,960 218,286

7 11 43 24 5,160 1,056 45,696 51,912 80,351

8 11 43 72 15,480 3,168 137,088 155,736 241,247

9 12 48 24 5,760 1,152 53,280 60,192 91,836

10 12 48 72 17,280 3,456 159,840 180,576 275,724

1 15 60 168 50,400 10,080 526,680 587,160 864,729

2 15 60 360 108,000 21,600 1,128,600 1,258,200 1,853,145

3 17 68 168 57,120 11,424 642,600 711,144 1,025,655

4 17 68 360 122,400 24,480 1,377,000 1,523,880 2,198,007

Large 5 20 80 168 67,200 13,440 836,640 917,280 1,287,204
6 20 80 360 144,000 28,800 1,792,800 1,965,600 2,758,500

7 22 88 168 73,920 14,784 979,440 1,068,144 1,475,010

8 22 88 360 158,400 31,680 2,098,800 2,288,880 3,160,962

9 25 100 168 84,000 16,800 1,213,800 1,314,600 1,776,879

10 25 100 360 180,000 36,000 2,601,000 2,817,000 3,807,855
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A proposed solution approach is evaluated based upon the best lower bound obtained
from all solution approaches. In other words, the percentage deviation (gap) between the

upper bound and lower bound of the i*" solution approach, U B; and LB;, respectively, is

determined as A f;(%) = (%ﬁf) x 100% Vi € S, where S = {[CPLEX],
[CPLEX-VI], [SAA], [SAA-VI]}. LBg.s stands for the best lower bound obtained from
all solution approaches, i.e., LBp.sy = Max{LB;} Vi € S. All solution approaches are
terminated when at least one of the following criteria is satisfied: (a) the gap falls below a
threshold value ¢, i.e., A f;(%) < ¢ or (b) the maximum computational time limit, C7T"™*,
is reached. In this study, the stopping criteria are set as ¢ = 1% and C'T™** = 3600 s.
Table 3.2 shows the comparative results obtained for the proposed solution approaches
in terms of the gap and computational time. Scenario size is set to N = 1,000 for
[CPLEX] and [CPLEX-VI], while for [SAA] and [SAA-VI], sizes of N = 20 and
N’ = 1,000 are used for small- and large-size scenarios, respectively. The boldface values
under the 7'(s) columns indicate the best computational time obtained across the proposed
solution approaches, while the boldface values under the A f(%) column indicate the best

gap developed by solution approaches when T'(s) = CT™. The following results are

obtained from Table 3.2 under restricted computational time and pre-determined gap:

e Results indicate that all proposed solution approaches outperform [CPLEX], partic-

ularly as the problem size increases.

e Although [CPLEX] is able to solve all small-size instances optimally, its perfor-
mance is increase by incorporating valid inequalities to model [BEV], i.e., [CPLEX-

VI], in relation to medium-size instances.
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medium-size instances optimally.

[CPLEX-VI] reduces the overall gap reported by [CPLEX].

[SAA] improves the overall performance of [CPLEX-VI] by solving all small- and

[SAA-VI] is capable of solving all problems optimally, except three large-size in-

stances. The gap reported by [SAA-VI] is % of the gap reported by [SAA] on aver-

age. This gap is improved significantly in relation to large-size instances.

[SAA-VI] reduces computational time in 50% on average compared to [SAA].

[SAA-VI] outperforms all proposed solution approaches and presents high-quality

solutions with respect to both required computational time and the developed gap,

particularly for large-size instances.

Table 3.2: Comparison of the results obtained from [CPLEX], [CPLEX-VI], [SAA], and

[SAA-VI]
Size [CPLEX] [CPLEX-VI] [SAA] [SAA-VI]
Case AT (%) T(s) AT (%) T(s) AT (%) T(s) AT (%) T(s)
1 0.09 6.63 0.16 704 0.08 361 0.11 301
2 0.13 11.24 0.17 13.47 0.14 15.66 0.19 13.87
3 0.14 957 0.15 8.25 0.23 11.47 0.34 12.62
4 0.23 19.79 033 12.98 0.29 2.64 027 20.74
Small 5 0.16 1178 0..64 14.82 0.18 16.85 0.42 14.97
6 0.28 27.02 0.49 19.88 0.44 32.87 0.16 29.14
7 0.34 17.64 0.67 10.24 0.36 19.64 0.27 18.35
8 0.46 38.06 0.34 24.38 0.28 4205 0.25 33.64
9 0.35 22.09 0.75 15.09 0.74 25.67 0.55 23.78
10 0.24 49.87 0.41 38.54 0.68 30.41 0.28 35.64
Average 024 2137 0.39 16.47 034 72,59 0.8 2117
I 051 365.06 038 425.08 025 171.73 0.77 183.69
2 1295 CcT™O® 763 CT™OE 0.76 1,336.87 0.39 589.67
3 0.85 2,912.59 0.73 3,152.67 0.37 1,187.63 0.14 468.97
4 1425 ~ CcT™mOw 949  CT™OT 0.84 1,763.87 0.64 785.41
Medium 5 712 CT™eT 497  cT™o 0.53 1,587.09 0.26 597.28
6 1563 CT™e® 1023 cT™e® 0.84 2,364.43 0.72 987.68
7 802 CT™eT 534 cT™mes 0.65 1,873.04 0.38 653.41
8 1652 CT™eT 1141 cT™eT 0.84 3,174.58 0.12 1,009.34
9 9.12 CcT™e® 658 CT™eT 0.58 2,141.78 0.62 763.14
10 1871 CT™e® 1254 CT™e® 0.46 3,374.21 0.44 1,143.81
Average 1037 325777 693 323778 0.61 189752 045 718.74
I 2288 CT™oF 1754 CT™o% 180 CT™moF 0.63 1,244.35
2 oM - oM - 224  CT™O® 041 1,465.38
3 oM oM 314 CcT™mes 0.83 1,301.41
4 oM oM 573 Ccr™mes 0.67 2,354.25
Large 5 oM oM 212 crmer 0.29 1423.12
6 oM oM 867 CT™OT 109 CcT™eT
7 oM oM 354 cT™mes 0.38 1,478.63
8 oM oM 1596 CT™e" 127 cTmes
9 oM oM 463 CT™OT 0.89 1,396.54
10 oM - oM - 1854 CT™e® 164 CT™*
Average 2288 CT7O% 1754 CT70F 665 CT"o% 081 2,146.37
Total average 6.14 1,732.92 152 1,721.07 253 1,840.04 0.51 962.09

CT" % stands for maximum computational time, i.e., 3600(s).
OM stands for out of memory.
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A hypothesis test is applied to compare the median gap generated by [SAA] with that
by [SAA-VI]. The result of implementing the Wilcox signed-rank test for Hy : pg = 0
vs. H, : pq # 0 indicates that there is a statistically significant difference between the
performances of the two aforementioned solution approaches (P, < 0.05), where pi4
represents the difference between the gap generated by [SAA] and [SAA-VI]. Thus, the
median gap generated by [SAA-VI] is significantly less from the median gap generated by

[SAA], endorsing the fact that [SAA-VI] is superior to [SAA].

3.4.3 Experimental Results

How to best utilize power resources during each time period of a day determines energy
network design. For a given set of assumptions, a sensitivity analysis is performed to
determine how different values of demand variability, power transaction limit, power grid
disruption, and the renewable resource size impact overall energy network cost.

All sensitivity analyses are performed with respect to a real life case study developed
for San Francisco (base case study). Figure 3.5(a) and 3.5(b) show the average utilization
of the various power sources used to satisfy electricity demand of a commercial building
and EV charging station, respectively, while Figure 3.5(c) shows the number of batteries
in each of the various states of swapped, charged, charging, and discharging.

Figures 3.5(a) and 3.5(b) clearly supports that the electricity demand of commercial
buildings and EV charging stations is primarily satisfied through the PG during the period
of 5:00 PM. to 8:00 A.M.™ (almost at the end of peak hours, whole off-peak hours, and

at the beginning of the first sub-peak hours). This is due to the low electricity transac-
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Figure 3.5: Average resource power utilization in a typical day for a building and charging

station in the base case study
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tion price during this period. In addition, electricity flow to commercial buildings and EV
charging stations from the PG reaches its minimum, G,/ ~ 0 and H,; A ~ 0, in the period
of 11:00 A.M. to 2:00 P.M. due to the high electricity transaction price during these times.
Furthermore, other power sources, particularly RES, have a significant impact on the re-
ducing the demand on the PG during the mid-day time period and, consequently, reducing
overall network cost. It is worth noting that a flow of surplus electricity between EV charg-
ing stations and commercial buildings shifts electricity demand with buildings providing
energy to charging stations during peak hours with the reverse occurring during off-peak
hours. Figure 3.5(c) supports that more batteries are charged and stored in the middle time
periods at EV charging stations. Also, the electricity stored in the batteries at a station is

discharged to the PG after fulfilling the electricity demand at the station. In the following

sections, the impact of critical parameters on the energy network cost is determined.

3.4.3.1 Impact of Demand Variability

We first investigate the impact of demand variability on utilization of diversified power
resources and, consequently, energy network cost. Let dj; and o7, be the mean and variance
of demand related to commercial building b at time period ¢, respectively. Three different
demand variation levels are considered: low (02, = 5%dy;), medium (07, = 15%dy; -
set as base case), and high (02, = 50%dy;). Let &; and o2 be the mean and variance of
the percentage of charged electric vehicles at time period ¢, respectively. Likewise, three
different variation levels are generated: low (af = 5%0;), medium (0't2 = 15%0,; set as

base case), and high (0?7 = 50%0;). We then implement Monte Carlo simulation tech-
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niques to generate the scenarios for those different variation levels. Figures 3.6a and 3.6b
represent electricity flow to the PG from commercial buildings and EV charging stations,
respectively, at low, medium (base case study), and high demand variation levels.

As shown in Figure 3.6a, as demand variability is reduced, electricity flow from a com-
mercial building to the PG increases. The reason lies in the fact that demand fluctuations
in electricity and thermal energy are controlled via a commercial grade battery system,
and the TES, respectively. In other words, a high level of demand variation leads to more
storage in the commercial-grade battery and TES, along with less electricity flow to the
PG and associated EV charging stations. Similarly, low demand variation level leads to
less storage in the buffers and more electricity flow to the PG and associated EV charging
stations. This indicates that demand variation has a significant impact on electricity and
thermal energy management in a building.

Likewise, high demand fluctuation leads to more electricity storage as stored batteries
at a charging station, which is shown by Figure 3.6b. In this regard, Figures 3.7a and 3.7b
represent the number of charging and discharging batteries at each demand variation level,
respectively. As shown in Figure 3.7, the number of charging batteries has a direct relation-
ship with demand variation levels, while the number of discharged batteries has an indirect
relationship with demand variation levels. The reason lies in the fact that the number of
charged, discharged, exchanged batteries and, consequently, the number of stored batteries
at an EV charging station changes based on the variation in the percentage of electric ve-
hicles that need to be charged, i.e., demand fluctuation. Therefore, a high level of demand

variation leads to less electricity flow to the PG and related commercial buildings and more
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Figure 3.6: Impact of buildings and charging stations demand variability on electricity flow

to the PG

stored batteries at an EV charging station, while low demand variation leads to more elec-
tricity flow to the PG and related commercial buildings and less inventory of fully-charged
batteries.

In summary, the level of demand variation has a direct relationship with the electric-
ity and thermal energy that are stored in the buffers of the commercial buildings and the
number of fully-charged batteries stored at EV charging stations. In addition, the level of
demand variation has an indirect relationship with power transaction between commercial

buildings and EV charging stations, as well as electricity flow to the PG.

3.4.3.2 Impact of Power Transaction Limit
This set of experiments studies the impact of power transaction, between related com-

mercial buildings and EV charging stations, i.e., xt¢, and x,, has on overall energy net-
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Figure 3.7: Impact of charging station demand variability on charging and discharging

electric vehicle batteries

work cost. To study this effect, the maximum amount of power transferred is increased
and decreased by both 10% and 20%. Table 3.3 shows the operation costs of commercial
buildings, EV charging stations, and overall network costs based on changes in the power
transaction limit. As shown in Table 3.3, it is clear that there is an indirect relationship
between the power transaction limit and network cost. In other words, the overall energy
network cost is reduced more by increasing the upper bound of power transaction.

To realize more the impact of power transaction between related commercial buildings
and EV charging stations on the overall energy network cost, power transaction is disre-
garded by setting x5, = 0 & x%, =0 Vi € Z,b € B,t € T. Regarding power transaction,
ie, % > 0 & x%, > 0, network cost is decreased by 14.24% due to surplus electricity

flow between the commercial buildings and EV charging stations and, consequently, elec-

127

www.manaraa.com



tricity demand is shifted from peak hours to off-peak hours. Overall, we observe that the

power transaction limit has a considerable effect on the overall energy network cost.

Table 3.3: System performance under different amount of electricity transaction between
building and CS

. ¢ e Costs .
Percent change in x;5/xj, Buildings  Charging stations  Overall network costs Cost saving (%)
-20% 15,813.12 1,095.73 16,908.85 -6.88
-10% 15,326.35 1,023.51 16,349.86 -3.35
0% (Base case) 14,878.49 941.54 15,820.03 0.00
10% 14,464.63 873.78 15,338.41 3.04
20% 13,941.09 816.21 14,757.30 6.72
No power transaction 16,896.68 1,176.43 18,073.11 -14.24

3.4.3.3 Impact of Power Grid disruption

Transmission line failure might occur due to excessive power flow between the PG and
a commercial building or EV charging station, or by a man-made/natural disaster. While
the occurrence of a disaster is not under our control, excess power flow can be controlled
by limiting power flow over consecutive time periods. A power shortage might occur in
an energy network due to a disruption and, consequently, a penalty cost is imposed on
the network due to either there being unmet demand or demand satisfied by an external
source(s). Since the PG has an important effect on the utilization of the different power
resources, the impact of a power grid disruption on energy network cost is investigated. A
commercial building or EV charging station is selected randomly and its connection with
the PG is terminated for several consecutive time periods. The disruption time period is set
to the last three peak hours, i.e., 5:00 P.M. to 8:00 P.M., when more power flow exists on

the transmission lines of the PG.
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Figure 3.8 shows the utilization of power resources in relation to a particular com-

mercial building, under both normal (Figure 3.8a) and disruption 3.8b) conditions. Figure

3.8b demonstrates that part of power shortage created by a power grid disruption (during

the last three peak hours) is satisfied by other power resources including the PGU and

commercial-grid battery with respect to their capacities. There is no significant change in

the RES utilization since it is utilized near to its maximum capacity under normal condi-

tions. In addition, there is no power transaction to the commercial building from the EV

charging stations during the aforementioned peak hours. Therefore, the remaining power

shortage is satisfied by one or more external resources, which is considered a penalty cost.

In addition, there are no changes in RES use after the disruption since it is utilized based

on its maximum capacity.
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Likewise, Figure 3.9 shows the utilization of power resources in relation to a particular
EV charging station, under both normal and disruption conditions. Figure 3.9b demon-
strates that part of the power shortage created by a power grid disruption (during the last
three peak hours) is satisfied by V2G and commercial buildings sources with respect to
their capacities. There is not much change in RES utilization since it is already utilized
near to its maximum capacity under normal conditions. Thus, the remaining power short-
age is satisfied by one or more external resources, which is considered a penalty cost. Some
demands are satisfied by swapping batteries in the range [154.2kW, 450.3kW]. Since the
upper bound of the electricity range of swapping batteries is 450.3kW, it is not shown in
Figure 3.9. It is worth noting that the overall energy network cost is increased by disrup-

tion, particularly due to penalty cost.
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Figure 3.9: Utilization of a EV charging station resources in a typical day under normal

and disruption conditions
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3.4.3.4 Impact of the Renewable Resource Size

Depending on the level of demand of the commercial buildings and EV charging sta-
tions, the RES size is determined. The availability and amount of energy that can be drawn
from a RES, /i, can vary during a day. The amount of electricity generated by the RES is
dependent on its size within commercial building b, ay, or within EV charging station ¢, a;.
Since RES size has an important effect on the utilization of other resources, particularly
during the first sup-peak hours and peak hours, the impact of the rrenewable resource size
on the overall energy network cost is investigated.

Since the RES size has an effect on power transaction between commercial buildings
and EV charging stations, as well as electricity flow to the PG, its effect is investigated at
four different levels of RES size in addition to the base case. These settings change the
RES size by £25% and £50%. As shown in Table 3.4, it is clear that there is an indirect
relationship between RES size and network cost with the overall energy network cost being
reduced as RES size increases. In addition, the impact of the RES size on network cost is
greater with respect to power transaction. Therefore, RES size has a considerable effect on
the energy network design (power transaction and electricity flow to the PG) and, conse-
quently, the overall energy network cost. This being the case, when power transaction is

considered, network cost is reduced by 23.72% when the RES size is increased by 50%.

3.5 Conclusion

This paper proposes a novel collaborative energy sharing optimization framework,

which considers two-way electricity flow among the PG, commercial buildings, and EV
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Table 3.4: System performance under different size of RES for building and CS

Power Transaction (PT)

Percent change in cst cs? cs?

Operation cost with PT Operation cost without PT
ala; Building CS Total Buildil:lg CS Total G o (%)
-50% 16,954.36  1,215.73 18,170.09 17,865.13  1,347.89  19,213.02 -14.85 -6.31 5.74
-25% 15,581.74 1,135.38 16,717.12 17,123.44 1,203.57 18,327.01 -5.67 -1.40 9.63
0% (Base case) 14,878.49 941.54  15,820.03 16,896.68 1,176.43  18,073.11 0.00 0.00 14.24
25% 14,123.47 836.56  14,960.03 16,763.84  1,104.51 17,868.35 5.44 1.13  19.44
50% 13,563.24 781.68 1434492  16,684.58 1,062.71  17,747.29 9.32 1.80 23.72

*Cost savings obtained comparing the altered RES size to its base case when PT is considered
2Cost savings obtained comparing the altered RES size to its base case when there is no PT
3Cost savings obtained at a given level comparing the use of PT against and not using of PT

charging stations. A two-stage stochastic MILP model [BEV] is formulated to determine
the key operational factors with the aim of network cost minimization under energy de-
mand uncertainty (thermal and electric energy). The operational decisions of buildings
include hourly power management decisions consisting of defining the startup/shutdown
time of the PGU and boiler, RES usage, charging/discharging state of a commercial-grade
battery and the TES, amount of electricity flow from/to the PG and related charging sta-
tions, and the amount of electricity and thermal energy charged, discharged, stored, and
transmitted from any of the components of the system. Likewise, the hourly operational
decisions of the charging stations include electricity flow from/to the PG and related build-
ings, RES usage, V2G power usage, and the number of batteries charged, discharged,
swapped, and stored. The model is computationally very challenging depending on the
number of buildings, charging stations, time periods, and potential number of scenarios
defined by a decision maker. To alleviate these challenges and to solve industry-size in-
stances, we develop an enhanced Sample Average Approximation (SAA) method. The
performance of the SAA method is improved with respect to generated valid inequalities.

Computational results indicate that the enhanced SAA method is capable of producing con-
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sistently high-quality solutions to realistic large-size problem instances within reasonable
computational times.

Sensitivity analysis performed on a case study based on the road network in San Fran-
cisco provides insightful results about the impact of demand variability, power transaction
limit, power grid disruption, and renewable resource size on the overall energy network
cost and design. In addition, computational experiments reveal numerous managerial in-
sights for managers to make operational decisions at the optimum network cost. The
following outcomes of our data-driven analysis can help decision makers to develop a
sustainable power management decision system related to commercial buildings and road
transportation sectors. Demand variability can be controlled by the buffer capacity. A
buffer with larger capacity is capable of reducing the amount of fluctuation on electricity
demand and electricity flow on a network entity. In addition, the overall energy network
cost is reduced more by increasing the permissible amount of power transferred between
related buildings and charging stations due to electricity demand shifting from peak hours
to off-peak hours. Also, availability of larger-scale RES has a considerable effect on power
transaction and electricity flow to the PG and, consequently, reduces the overall energy
network cost and design. Finally, the amount of power flow from the PG to a building or
charging station should be controlled so that PG utilization does not exceed a pre-specified
upper bound for electricity flow over several consecutive time periods. In summary, over-
all energy network cost is considerably affected by any change in the permissible power
transaction between buildings and charging stations, the buffer capacity of buildings, and

the RES size.
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There are several possible extensions of this research. A first would be to include
consideration of the impact of EV congestion at charging stations on a driver charging de-
cision. Apart from this, a more realistic approach can track drivers’ behaviors in relation to
the congestion at EV charging stations. Prevention and disruption models can be surveyed
with respect to limited power grid utilization. Furthermore, it would be interesting to con-
sider the stochastic nature of other parameters in the model such as the RES availability,

the SoC of commercial-grade batteries and the TES, and the SoC of EV batteries.
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CHAPTER IV
DESIGNING A RELIABLE ELECTRIC VEHICLE CHARGING STATION

EXPANSION UNDER UNCERTAINTY

4.1 Introduction

As a result of the growing concern over global warming, weather changes, and depen-
dence on fossil fuels, electric vehicles (EV) have gained tremendous attention all over the
world in the last few decades. In it’s continuation, we observe a tremendous EV sales in-
crease on U.S. market in recent years i.e., approximately, 700% sales increase from 2011
to 2016 [55] where nearly 82% sales increase only in December, 2016 over the same time
period in 2015 [35]. Additionally, with a number of incentive policies proposed by both
federal and state government, it is anticipated that there will be approximately 2.7 million
of EVs on the U.S. road by 2020. Furthermore, it is expected that EV market share will hit
10% by 2025 [56].

However, the large EV penetration will bring both challenges and opportunities for the
power grid (PG). Running these automobiles on electricity instead of gasoline shifts energy
requirements from gas pumps to the power grid. For instance, recent report reveal that the
high penetration of EVs have a significant impact on the existing power network systems
[72]. With another study by Qian et al. [98] state that a 10% market penetration of EVs

would increase the daily peak electricity demand up to 17.9%, whereas 20% level of EV
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penetration would lead to a 35.8% increase in peak electricity load. The Excessive power
flow through a transmission line leads to the line overheating and, consequently, cause the
transmission line failure. Thus, if the charging is unmanaged for such a large number of
EVs, the power grid can be affected negatively. These facts mandates an urgent need to
efficiently design and manage EV charging station to support large-scale deployment of
EVs and achieve efficient grid operation and true environmental protection.

The U.S. Energy Information Administration (EIA) reports that the power demand
varies significantly throughout the day [118] and from 10:0 A.M. to 8:0 PM. are con-
sidered as peak hours of a regular day. The EIA further reports that replacing the internal-
combustion engine vehicles with EVs will add approximately 1,198 TWh of electricity de-
mand to the grid [119]. This number represents a nearly 29% increase in annual electricity
demand in the United States. With more EVs in the market, their charging on different
time period of the day can add a large load in the electricity grid. The excessive electricity
flow causes line over heating, which in extreme case cause power transmission line failure.
Thus, if the charging stations are not expanded and managed properly, the resultant exces-
sive load can bring serious disruption effect to the power grid system. To hedge against
this projected growth, power companies may need to upgrade electric distribution sys-
tems, increase capacities, integrate other forms of energies (e.g., renewable energy sources
(RES),vehicle-to-grid (V2G) system), introduce dynamic segment-wise pricing options,
and encourage off-peak charging so that the growing loads do not exacerbate peak demand.

To alleviate of excessive load on the PG one possible way is to integrate renewable en-

ergy sources (RES) with vehicle-to-grid (V2G) sources while planning for optimal charg-
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ing schedules for EVs. We observe a stream of research that address the integration of
renewable energy with V2G sources while planning for charging schedules of the electric
vehicles. For instance, Liu et al. [68] study how the smart charging patterns of electric ve-
hicles affect the power system scheduling while considering coordination of wind energy,
thermal units, and V2G sources. With another study by Ortega et al. [88] and Haddadian
et al. [46] investigate how the integration of V2G with power systems can be made to
achieve better efficiency and security. Results show that this coordination will allow to op-
erate efficiently under the existing power infrastructure. Likewise, Fathabadi [33] studies
the different effects of incorporating V2G and renewable energy with a power network.
The goal is to identify the best coordination that is effective in sustaining the system while
reducing the cost and loss of power production. Another study by He et al. [48] present a
global and a local scheduling model to decide on charging and discharging decisions for
electric vehicles with an aim of minimizing the overall system cost. Haddadian et al. [45]
consider electric vehicles as distributed storage devices and study their coordination with
renewable energy to make the power supply more stable. The authors propose a mixed-
integer programming (MIP) model to optimize the hourly scheduling of electricity where
several key components of the model such as hourly load, energy, and outages are gener-
ated using a Monte-Carlo simulation. Guo et al. [44] plan for the operations of electric
vehicle parking decks considering the availability of renewable energy sources. The goal is
to develop a tool to decide on hourly parking fees and charging prices based upon the fore-
cast values of the available renewable energy. Zhang et al. [134] introduce a scheduling

model to minimize the mean waiting time for charging the electric vehicles at the charging
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stations equipped with multiple plug outlets and availability of renewable energy sources.
Electric vehicle arrival, fluctuation in grid power prices, and level of production of renew-
able energy are modeled using a markov decision process. Hong et al. [51] and Jin et
al. [59] propose a stochastic optimization model model to determine charging strategies
for electric vehicles by taking into account overnight charging, peak-load discharging, and
availability of renewable energy. Although these studies have practical implications, they
attempt to manage EV charging activities for a single charging station while no attention
is given for charging station expansion decisions.

Another stream of research is dedicated to integration of microgrid system in elec-
tric vehicle charging to pacify the electricity load on power grid. For example, Beer et
al. [16] analyze the possibility of extending the life-cycle of EV batteries to a secondary,
stationary application. The important finding from the study that battery usage can be op-
timized by installing used battery packs in buildings’ micro-grids. Likewise, Momber et
al. [80] investigate the EVs’ integration into a building’s energy management system. The
authors model the relation by the distributed energy resources customer adoption model
(DER-CAM), which can able to find optimal equipment combinations for meeting micro-
grid requirements at minimum cost and carbon footprint. With another study by Kriett and
Salani [64] consider a generic mixed integer linear programming model to nd the minimum
cost operating schedule of both electrical and thermal supply and demand in a residential
microgrid system. Along in the same line, Kavousi-Fard and Khodaei [61] investigate the
viability of the re-configurable microgrids (RMGs) in facilitating the integration of electric

vehicles (EVs). The goal of the proposed optimal scheduling problem is to minimize the
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total cost of power supply by distributed energy resources (DERs) and upstream network
energy exchange, battery degradation cost in PEVs, cost of switching during the reconfigu-
ration, and expected customer interruption costs as a reliability index. Deilami et al. [29] in
another study, develop a novel load management solution for coordinating the charging of
multiple EVs in a smart grid system. The authors employ a real-time smart load manage-
ment algorithm based on maximum sensitivities selection optimizations to improve smart
grid performance with high penetration of EVs. Honarmand et al. [50] propose a new
energy resources scheduling for a microgrid consisting of renewable generation and EVs.
The authors shows that the intelligent scheduling and control of charging and discharging
of EVs introduces a great opportunity for evolving a sustainable integration of electrical
and transportation system. Note that most of the existing studies along this line attempt
to optimize EV charging (e.g., hourly charging, discharging, storing) and microgird oper-
ations decisions within the facility while little or no attention is given to the design and
expansions of charging stations.

Another theme found in the literature focuses on locating refueling stations to max-
imize traffic flow. For instacne, some stuides attempt to extend the single time period
flow-refueling location model (FRLM), introduced by Kuby and Lim [65], to multi-time
period expansion models. Chung and Kwon [23] extend the FRLM to a multi-period charg-
ing station location model where the comparison between the single-time and multi-time
period expansion model are made by constructing a case study using real traffic flow data
obtained from the Korean Expressway network. Zhang et al. [132] further extend FRLM

to determine an expansion plan (both location and capacity expansion) for the charging
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stations and charging modules over a pre-defined planning horizon. Another study by Li et
al. [67] propose a dynamic multi-period, multi-path refueling-location model that captures
the dynamics of topological structures of a network. The authors formulate the model as a
mixed-integer linear program which is later solved by using a GA approach. The objective
of this model is to minimize the total cost of installing new stations and relocating exist-
ing stations for the electric vehicles that can be used for intercity trips. Sweda and Klabjan
[112] identify the patterns in residential electric vehicle ownership and driving activities by
developing an agent-based decision support system to allow strategic deployment of new
charging stations. Chen et al. [22] perform regression analysis on parking survey data to
predict parking demand variables, local jobs and population densities, trip attributes, and
other variables to determine where to locate charging stations in a parking location. Jia et
al. [58] optimize the sizing and siting of electric vehicle charging stations and minimize
the cost of charging stations. Bouche et al. [12] use trip based origin-destination (OD) data
to evaluate the energy consumption of the electric vehicles that is used as an input to opti-
mally locate charging stations. Ge et al. [38] partition the planning area and then evaluate
the best location and sizing of charging stations for each partition using a GA approach.
The main goal is to minimize the cost of travel for an EV user. Hosseini and MirHassani
[52] introduce a two-stage stochastic refueling station location model, where the first-stage
locates permanent stations while the second locates portable station. A two-step heuristic
algorithm is used to solve the problem, where the first step reduces the size of the problem
by solving a relaxed version of the original model while the second step applies a greedy

algorithm to locate the charging stations. He et al. [47] use an equilibrium framework

140

www.manaraa.com



to capture the interactions between electricity prices, traffic flow, and availability of public
charging opportunities. The information obtained is used to determine the optimal location
of the electric vehicle charging stations. A mathematical program model is presented and
solved using an active-set decomposition algorithm. Ip et al. [57] use a clustering tech-
nique that compile data points that contain quantified road information of electric vehicle
charging demand in an urban setting to inform the location plans for the electric vehicle
charging stations. Xi et al. [130] use a simulation-optimization model that determines
where to locate electric vehicle chargers and the best combinations of power levels to be
used at each location. Bhatti et al. [17] study a two-stage optimal location decision prob-
lem, where the demand information is learned over time. A key feature of the model is to
provide a solution for whether to actively learn the market through a greater initial invest-
ment in the alternative fuel stations network or to deter the commitment since an overly
aggressive investment often results in sub-optimal alternative fuel stations’ locations. With
another study, Arslan and Karasan [7] study the charging station location problem with
plug-in hybrid electric vehicles as a generalization of the flow refueling location problem
(FRLM). Furthermore, the authors propose a Benders decomposition approach to solve this
problem. Recently, Vries and Duijzer [122] prove FRLM as strongly NP-hard, and pro-
pose a novel mixed-integer linear programming formulation for the FRLM. The authors
also demonstrate how this model can be extended to the case for which the driving range
varies during a trip. Though these extensions are practical, the authors only concentrate
on charging station expansion decisions and little or almost no attention is paid on how to

manage them. However, in reality, both long-term (e.g., location decisions) and short-term
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charging station decisions (e.g., hourly management decisions) need to be optimized si-
multaneously in order to benefit the development of this future sustainable transportation
system. Although these studies have some implications, however, they give little attentions
to short-term EV charging station operational decisions. Further, they ignore the reliability
of power network due to the over flowing of electricity.

After surveying the literature we found that till now no prior studies have investigated
the reliability of EV charging station with uncertain power demand and integrated long-
term charging station planning decisions with short-term operational decisions in a same
decision making framework. We notice from the existing body of literature that there are
models that captures either long-term charging station planning decisions or short-term op-
erational charging stations managing decisions. To fill this gap in the literature, we develop
and solve a reliable EV charging station planning and managing problem with explicit con-
sideration of random power demand. We model the condition of the line temperature due to

the excessive flow of electricity. The contributions of this paer are summarized as follows:

1. We develop a novel reliable two-stage stochastic mixed-integer non-linear program-
ming model that incorporates both long term planning decisions and short-term
hourly operational decisions to design and manage reliable electric vehicle charg-
ing station decisions under stochastic power demand. The proposed model differs

from existing studies in that:

(a) We consider a reliable two-stage stochastic program where in the first-stage we

determine size, type and timing to open charging stations based on stochastic
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demand, and in the second-stage we satisfy the charging stations demand and
track the operations of demand response with a short-term hourly time resolu-

tion.

(b) To lienarized the model, we employ three linearization techniques based on

McCormick relaxation techniques (also known as McCormick envelopes).

2. We propose and implement a customized hybrid decomposition solution approach
that combines a Sample Average Approximation algorithm with an enhanced Sce-
nario Decomposition Algorithm to solve our proposed optimization model. The
enhanced Scenario Decomposition Algorithm incorporate different variants of the

rolling horizon heuristic.

3. We apply the proposed model and algorithm to a realistic scale case study based on
the road network of Washington, D.C. The outcome of this study provides a number
of interesting managerial insights on total system cost and optimal system design.
The decision includes optimal reliable EV charging station expansion, number of
batteries charged, discharged, stored, vehicle-to-grid, RES, grid power usage deci-
sion under stochastic power demand. These results can effectively help decision
makers to investigate the impact of hourly demand management capabilities of a
charging station. Further, we demonstrate the computational performance of our
customized hybrid algorithm relative to its generic version. It is worth mention-
ing that that algorithm [SAAgp,;p] provides an 44.3% and 57.5% faster solution

than algorithms [SAAgsp] and [SAAy.sic], respectively while dropping the average
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optimality gap from 2.33% and 2.05% to 0.66%, respectively. By conducting a com-
prehensive computational study, we show that the enhanced variant of the hybrid
decomposition algorithm is capable of producing high-quality solutions consistently

to solve realistic large-size problem instances in a reasonable amount of time.

The remainder of this paper is organized as follows. Section 4.2 presents the two-stage
stochastic programming model formulation for optimal sizing and locating of charging
station considering power demand uncertainty. The hybrid solution approach to solve our
optimization model is introduced in Section 4.3. Section 4.4 presents a series of numerical
experiments to draw managerial insights and verify the algorithmic performances. Lastly,

Section 4.5 provides conclusions and also briefly discusses future research directions.

4.2 Problem Description and Model Formulation

The electricity supply for electric vehicle charging stations at a transportation network
is known as an electricity supply network. The problem description is provided in this
section, which is followed by two-stage stochastic mixed-integer nonlinear programming
(MINLP) model to solve the research problem optimally. The model determines the design
of the electricity supply network in terms of the type, location, and time of established
charging stations along with electricity flow from limited resources to established charging
stations. The purpose of the model is to minimize the overall electricity supply network
cost with respect to network design, which allows decision makers for serving electricity
demands in an efficient way. In addition, three linearization techniques are proposed in

terms of basic McCromick linearization technique to relax bilinear variables of the model.

144

www.manaraa.com



4.2.1 Problem Description

The problem addressed in this study considers an electricity supply network including
multiple charging stations with different electric supply capacities to satisfy electricity
demand under demand uncertainty. In order to make strategic and operational decisions
for satisfying uncertain demands, the transportation network is divided into a set of cells Z,
where each cell can be considered as a potential location to establish a charging station over
a set of time periods including a set of hours H and a set of years 7. Charging stations
are established at different cells with respect to a set of electric supply capacities /. In
this research, two types of charging stations are considered with respect to set KC: type 1
charging stations which include the PG, the RES, and V2G usage as power resources; and
type 2 charging stations which include swappable batteries as the main power resource in
addition to power resources available for type I charging stations.

Electricity demand of charging stations are satisfied by limited electricity supplied
through three different resources: (i) conventional power generators, which are gener-
ally located in power stations and send electricity through power grids; (ii) solar power
as renewable energy sources; and (iii) discharge of electric vehicles into the grid through
vehicle-to-grid connection capabilities. If the self-supplied electricity of a charging sta-
tion, i.e., the RES, along with the electricity supplied by the PG and V2G are not sufficient
to satisfy electricity demand of the charging station, penalty cost is imposed to the net-
work in relation to unsatisfied demands due to power shortage and/or satisfied demands

due to imported power from resources outside of the network. Figure (4.1) demonstrates
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the electricity supply network including several network cells and two types of established

charging stations along with electric energy flow of different electricity resources.

Type 2 Charging Station .

Vehicle Charging |
Swapping Battery

Battery

Power Grid

g
s
£
7

on|
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7 Electric encrgy flow

Figure 4.1: Illustration of integration of different electricity supply resources with two

types of charging stations established at different network cells

The demand of each cell is modeled as a random variable of which probability distri-
bution might not be known in advance. Accurate prediction, even for small-scale network,
is difficult due to the stochastic nature of network along with the uncertainty in available
resources. Therefore, a set of scenarios () is determined, where each scenario is associ-
ated with a positive probability. Electricity demand of each cell is determined in terms

of the expected number of electric vehicles traversed through the cell in each time period
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and, consequently, the percentage of those that requires to be charged under each scenario.
Likewise, expected V2@ electricity availability is determined in terms of the percentage of
electric vehicles required to be discharged in each time period under each scenario. Since
electricity usage cost is dependent on the amount of electricity usage so that it is exponen-
tially increased by electricity usage increment, a pricing mechanism is determined based
on a set of segments R in such a way that each segment is related to a different range of
electricity usage with a particular price per unit consumption.

Excessive power flow through a transmission line leads to the line overheating and,
consequently, the transmission line failure. To describe this effect, the evolution of the line
temperature is monitored based on power flow in the line. Then, the failure of a transmis-
sion line is determined based on power flow loading over the line transmission capacity.
Thus, a prevention model is proposed to prevent electricity supply network disruption. Re-
garding strategic and operational decisions, the research problem is to design an electricity
supply network over a pre-specified planning horizon and under electricity demand un-
certainty. Optimal strategic decisions include long-term electric vehicle charging station
expansion decisions consisting of establishment time, location, and type for charging sta-
tions in each year. Optimal operational decisions include short-term power management
decisions to not only satisfy demands, but also prevent network disruption. Operational
decisions determine the number of charged, discharged, exchanged, and stored batteries as

well as the amount of V2@, renewable, power grid usage in each hour.

The other assumptions considered for the research problem are summarized as follows:
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e annual establishment and development costs of charging stations

e annual dynamic size of RES at each charging station

e annually limited number of available batteries at each charging station

e annually limited number of plug-ins for charging/discharging of batteries at each
charging station

e minimum annual demand to establish charging stations

e limited solar radiation and V2G energy

e maximum amount of hourly electricity flow to network cells from PG

e no power transaction among charging stations

e power flow restriction through the transmission lines

e pre-determined equally time periods in terms of hours and years

4.2.2 Model Formulation

Since electricity demand is stochastic, a two-stage stochastic MINLP model is pro-
posed to simultaneously determine yearly strategic decisions and hourly operational deci-
sions through a set of time periods over a pre-specified planning horizon. In the first-stage,
an electricity supply network is designed in terms of annual establishment location and type
of charging stations at different cells of a transportation network, while hourly electricity
flow from power resources is determined with respect to disruption prevention under each
scenario in the second-stage of the MINLP model. The first-stage decision variable deter-
mines the electricity supply network design in each year, while the second-stage decision

variables determine hourly electricity flow as follows:

e clectricity flow from PG to charging stations under disruption prevention
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e clectricity flow from V2G and RES to charging stations
e number of charged, discharged, stored. and exchanged batteries at type 2 charging
stations

e power shortage in each charging station

In the following, the sets and indices, subsets, parameters, and decision variables are
briefly explained and followed by the mathematical formulation. Parameters are intro-
duced by lowercase and Greek letters, while variables are introduced by uppercase letters.
Additionally, the superscript of parameters represent their brief descriptions, while their

subscripts represent their indices.

Sets and Indices
7 setof cells, indexed by 7
KC  set of charging station types, indexed by &
R set of segments of charging price, indexed by r
) set of scenarios, indexed by w
set of hours, indexed by A

set of years, indexed by ¢

Parameters
e 1;;: annual establishment and development cost of charging station of type £ at cell
1in yeart

o fin: electric vehicle flow at cell ¢ in hour h of year ¢
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A: average unit power required for charging each electric vehicle (kWh)

~: average unit power obtained from discharging each electric vehicle (kWh)

Nhto: percentage of electric vehicle charged in hour h of year ¢ under scenario w
Bre: percentage of electric vehicle discharged in hour £ of year ¢

¢ unit PG electricity cost for segment 7 of charging price in hour % of year ¢
($/kWh)

29 unit V2G electricity cost in hour h of year t ($/kWh)

aj,: RES size of a charging station established at cell 7 in year ¢

1" RES electricity generation efficiency

bl,,: solar radiation available at cell ¢ in hour A of year ¢

¢y, unit penalty cost for power shortage in hour h of year ¢ ($/kWh)

pi;: minimum power requirement to establish a charging station of type k in year ¢
c;,: unit storage cost per battery in hour h of year ¢

c,,- unit electricity selling price to PG in hour & of year ¢ ($/kWh)

¢i™: number of plug-ins available for charging batteries in year ¢

q?"*: number of plug-ins available for discharging batteries in year ¢

u;: maximum number of available batteries at each fype 2 charging station in year ¢
wiy,,: outside temperature at cell 7 in hour / of year ¢

ug,,: air velocity at cell 7 in hour h of year ¢

t4: duration of time period (hr)

©ire®: maximum limit of power line temperature before disruption at cell ¢ in hour i

of year ¢
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max.

e ¢/?*: maximum limit of power line electricity before disruption at cell 7 in hour A
of year ¢

e ¢g,.: maximum electricity availability in segment r of charging price

e 7: percentage of the risk aversion degree

e v electricity-to-carbon conversion factor

e ¢°: carbon emission tax ($/ton)

e a/7%: maximum power available for charging electric vehicles' at cell 7 in hour i of

year ¢

e p,: probability of scenario w

In the following, the first- and second-stage decision variables of two-stage stochastic

MINLP model are briefly explained.

Decision Variables First-stage Decision Variable

e Y. 1if a charging station of type k is established at cell 7 in year ¢; O otherwise

Second-stage Decision variables

o G inw: electricity flow from PG to cell 7 in hour A of year ¢ under segment r and
scenario w

o F.inw: electricity flow from PG to cell ¢ to charge electric vehicles in hour £ of year
t under segment r and scenario w

® Zinw: electricity flow from RES to cell ¢ in hour h of year ¢ under scenario w

® Vin: electricity flow from V2G to cell 7 in hour A of year ¢ under scenario w

!Calculated based on the number of plug-in available and average charging time of electric vehicles
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o Rini,: power shortage at cell ¢ in hour h of year ¢ under scenario w

o H;;.,: number of full-charged batteries available at cell 7 in hour A of year ¢ under
scenario w

e B;ni,: number of swapped batteries at cell ¢ in hour h of year ¢ under scenario w

e S,.inw: number of charging batteries at cell ¢ in hour £ of year ¢ under segment r and
scenario w

e P number of discharging batteries at cell 7 in hour A of year ¢ under scenario w

e X, .nw: 1if acharging price of a charging station established at cell ¢ in year ¢ is in

segment r in hour h under scenario w; 0 otherwise

Before going through the proposed model, the operational decision in relation to the
prevention and control of the transmission line failure is explained. The behavior of cus-
tomers, i.e., charging stations owners, determines risk aversion 7, when exposed to uncer-
tainty, in attempting to lower that uncertainty. It is a trade-off between a situation with an
unknown payoff and another situation with a more predictable payoff but possibly lower
expected payoff. Transmission lines are assumed to be so thin such that the temperature is
the same at all points of their cross-section. A transmission line is considered with a con-
stant area of cross-section w, perimeter p, thermal conductivity /i, electrical conductivity
o, density p, and specific heat c. The heat flux across the surface of the line is proportional
to the temperature difference between the surface and the surrounding medium (air). It is
given by H(T — T'), where T' and T" denote the surface and surrounding temperatures
of a line, respectively, and H signifies the surface conductance. In order to estimate H,

it is assumed that the loss of heat across the surface of the line is due to forced convec-
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tion. In addition, / depends on the velocity and the nature of the surrounding medium
along with the transmission line shape [5]. The surface conductance is represented as
H =8 x 107°(ug,,/d)"/? cal /(cm?s K), where u%,, and d represent turbulent flow of air
velocity and transmission line diameter, respectively.

The power flow fluctuation through transmission lines propagates much faster than any
heat flow transient. In addition, the spatial variation in temperature through the line is
neglected since the heat source is equally distributed through a line. Therefore, the impact
of time evolution in the line temperature in term of the power flowing through the line, i.e.,

Tintw(ta, Grintw), 1 described as follows:

T‘ihtw (td7 Grihtw) = e_yihttd ( Crz’(hfl)tw(Gri(hfl)t(.u) - Ehtw(Grihtw)l> + nhtw(Grihtw)

N

Vo
Temp. difference between two consecutive periods

and

o Gm’ w 2 a
Tinteo(Grintw) = V_ht% + Wiy

where t, is time evolution for each time period h, Vh € H; G, ipy, is the amount of
power flowing through the line; and T4, (G rintew) and Tipge (ta, Gringw) are the surface tem-
perature of the line in time period h and during time evolution ¢4, respectively. The voltage
of the line is obtained by V' = G,ip,/ Line, while wg, is the surrounding temperature of the
line. Furthermore, v, = Hp/(pcw) and o = 0.239/(pcw?a). By substituting v, v, and
H in Tipy,(Gringw ), the surface line temperature in time period h is obtained as follows:
. (Grintw)’

a
1 + Wipt

(ufy,)?
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where ¢ is a constant value as ¢* = (0.239d2)/(8 x 10 °wopV?). As a result, the
surface line temperature has an indirect relationship with air velocity. Following the same

procedure, v;;,; 1s calculated based on air velocity as follows:

vae = u)

[N

b is a constant value as ¢* = (8 x 107°p)/(pcwd?). Generally, the surface line

where ¢
temperature during time evolution depends on the surrounding line temperature, power
flow through the line, and air velocity in a particular time period. Therefore, the surface

line temperature during time evolution is recalculated with the help of Tju, (G rinw,) and

Vi Which are represented by Gipe,, Uy, and wi, as follows:

N|—=

—cb(us 3 a a \—2 a —
CFihtw(tdaGrihm;) =€ ( Z(thl)t)Qtd ¢ (((uzht> é(Gm'hm;)Q) - (<ui(h+1)t> (Gri(h+1)tw)2)>

N

+(w;‘lht - w?(h+1)t) + (ug(h+1)t)_ (Grithy)” + With 41yt

where the surface line temperature during a particular time evolution is set as
Tintw(ta, Grintw) < ©9* in order to prevent and control the transmission line failure. It is
clear that ¢};¢* restricts ¢;;7* also. In addition, the maximum limit of power line electric-
ity is not permissible for electricity flow from the PG to a charging station for each two

consecutive time periods, since it leads to power disruption. In the following, two-stage

stochastic MINLP model refereed as [NEV] is presented.
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Mathematical Model

The objective function minimizes annual establishment and development costs of es-
tablished charging stations along with power flow costs through available energy resources
to satisfy electricity demand of network cells. The first-stage decisions made prior to real-
izing any stochastic event (e.g., electricity demand) correspond to the state of establishing
and developing charging stations in each time period, while the second-stage decisions
include determining electricity flow from the PG, RES, and V2G to established charg-
ing stations as well as battery inventory management at established charging stations of
type 2. The aim is to minimize the first-stage costs and the expected value of the random
second-stage costs across all possible electricity demand scenarios. The objective function

of model [NEV] is proposed as follows:

[NEV] Minimize >3 vinYi +E[Q(Y, w)] 4.1)

€L keK teT

J/

~
Establishment cost

In [NEV], the first-stage objective function represented by the first term of Eq. (4.1)
determines the cost associated with annual establishment and development costs of differ-
ent types of charging stations established on different cells of an electricity supply network.

The following constraints (4.2) through (4.4) are related to the first-stage problem.

ZYM <1 VieZ,teT (4.2)
kel
Yie € {0,1} VieI keKteT (4.4)
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Constraints (4.2) ensure that at most one charging station of all types is established in
a given cell of network, while constraints (4.3) indicate that if a charging station is estab-
lished in a particular year, it remains active for the subsequent years. Constraints (4.4) set

the binary restrictions for the first-stage decision variables.

In [NEV], E[Q(Y,w)] = > cqr.Q(Y,w) and Q(Y,w) is the objective function of

the following second-stage problem:

<. . c. etc
Q(Y,w) = Minimize E E E E i Grintw + cht Vihiw + ¢V E G rintew
G,S,V,RHP

i€ heH teT TGR reR
Vo
Electricity flow cost Carbon emission cost
u S —
+ Cht Rihtw + Cht H ihtw - Cht’VPihtw (4 . 5)
N—_—— N—_—— ——

Power shortage cost ~ Battery storage cost  Battery discharging benefit

In [NEV], the second-stage objective function represented by the second term of Eq.
(4.1) determines the expected cost associated with electricity flow, carbon emission, and
power shortage at established charging stations of each type along with the expected cost
associated with battery storage and the expected benefit of battery discharging at estab-
lished charging stations of type 2. With respect to charge loading of electric vehicles and
batteries, optimal electricity flow is determined from the PG to charging stations in terms
of a particular charging price. In addition, electricity flow from the PG imposes carbon
emission cost to the model. Restricted capacities of power resources and charging price
strategy along with predicting power disruption determine power shortage cost (unsatisfied
demands), while battery inventory management determines battery storage cost. Finally,
the surplus electricity of type 2 charging stations is sent to the PG in order to reduce op-

156

www.manaraa.com



erational costs. The following constraints (4.6) through (4.31) related to the second-stage

problem determine operational decisions.

> Brintw + Zinteo + Vinto + ABino = > DiiYae Vi € T(4.6)
reR ke

heH,teT,wefl

(M fine = (3 Brineo + Zinto + Vo + MBitw) ) = Rinewr Vi€, (47)
re€R

heH,teT,wel

O > Buw VieI, (48

T { V\T}htwf it — (aps® +)\a£tbght77r + B f iht)J

heH,teT,we)

Constraints (4.6) guarantee to satisfy a set of minimum power requirement to establish
charging stations in different time periods. Constraints (4.7) guarantee electricity supply
for uncertain electric demand of each charging station where electricity resources include
the RES, full-charged batteries, the PG, V2G, and an external resource(s) as power shortage
compensation. Constraints (4.8) restrict the number of swapped batteries at type 2 charging
station with respect to the difference between electricity demand and electricity supplied
by resources. The following constraints (4.9) through (4.18) correspond to battery storage

management at type 2 charging stations.
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Hillw

Z Srillw

reR

Z Srihlw

reR

Z Sm'htw

reR

Z Srihtw

reR
IDihtw

Bihtw + Pihtw

Hihtw - Bihtw - Pihtw +

Z Srihtw

reR
Himjww — Bijmjw — Pimjw +

Z Shri| H|tw

reR

IN

IN

IN

IN

IN

u1Yior VieZ we) 4.9)
0 VieZ,we (4.10)
w — Hyppo Vi€, h>2,weN 4.11)
u — Hipyo Yi€Z heH,t>2,we) (4.12)
G"Yy VieT,heHteT,weQ  (4.13)
@Yy Vi€, heH,teT,we (4.14)
Hipow YieZ heH teT ,we) (4.15)
(4.16)
Hihiiyw Vi€, he H\|H|,t €T ,we
4.17)

Hil(t+1)w Vi € I,t € T\]T|,w cQ

At the beginning of the planning horizon, a restricted number of full-charged batter-

ies is considered at type 2 charging stations. In addition, since all available batteries are

charged, the number of charging batteries is set to zero. Therefore, constraints (4.9) and

(4.10) are added into the model. Constraints (4.11) and (4.12) restrict the number of charg-

ing batteries based upon battery availability and inventory. Constraints (4.13) and (4.14)

restrict the number of charging and discharging batteries by the number of plug-ins avail-

able at each type 2 charging station, respectively. Constraints (4.15) restrict the number of

discharging batteries and battery demand to available full-charged batteries. Finally, con-
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straints (4.17) and (4.18) determine the number of available full-charged batteries in terms
of previous inventory along with the number of charging/discharging batteries and battery

demand.

> Xeimw = Y Yiu VieLheMHteT,weq (4.18)

reER ke
Xrihtwgr—l S Grihtw S Xrihtwgr vr € R,Z € I, h € H,t € T,w € Q (419)
Grihtw = E’rihtw + /\Srihtw \V/T < R,Z € I, h < H, t e T, (420)

we N

Constraints (4.18) consider a segment of charging price at each time period for each
charging station and, consequently, constraints (4.19) and (4.20) restrict electricity flow
from the PG to each charging station based on selected charging price in relation to charge

electric vehicles and/or batteries.

Z(Gm‘htw + Gri(h—i—l)tw) S Z )/ikt (QZZ?QJ + g'f?l?il)t) (1 - ﬂ-) Vi € Z? (421)
reR ke

heH\|H|,teT,weN

D (Gt + Grangsnw) <D Ya(giiih + gitity) (1 —7) Vie T, (4.22)
reR ke

te T\|T|,we

Constraints (4.21) indicate that electricity flow from the PG to each charging station
is not beyond the maximum limit of power line electricity for each two consecutive time

period in order to prevent power disruption. The maximum limit of power line electricity is
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dependent on risk aversion degree, i.e., 7, of decision makers. Likewise, constraints (4.22)

create a connection between the last and first time periods of each of two consecutive years.

e~ luli e [ —c* ((U?R)_% Z(Griltw)2> + (wiy, — w?lt)} + (4.23)

reR

{uy 72 (Grine)? +wlhy < PV €Tt € T,w € Q
reR

o~ {1y} 2 ta [Ca(((ufht)fé Z(Gm’htw)z) - ((U?(hﬂ)t)% Z(Gri(thl)tw)Q)) (4.24)

reR reR

a a a a —l a max
+(wih, — wi(h+1)t)} + Uy} E (Grithayw)? + Wit 1) < Pithtye
reR

VieZ,heH\|H|,teT,we

— (e 50,0 PNt “ 1
e~ (M)t [C (((uﬂH\t) 2 E :(GM‘\HItw)Q) - ((uil(t+l)) ? E :(Gril(t+1)w)2)>(4'25)
reR reER
1

+(wg|H\t - w?l(t+1))i| + (Wi i1)) 2 Z(Gril(t+1)w)2 + Wi 1y < Pit(ern)
reR

VieZ teT\|T|,weQ
Constraints (4.23) through (4.25) restrict the surface line temperature to the maximum
limit of power line temperature in order to prevent power disruption during each time pe-
riod. As mentioned, the current surface line temperature depends on the electricity flow
from the PG in relation to the current and previous time periods (Ginw, and Grih41)ww)
duration of each time period (), outside temperature (w,,), and air velocity (ug,,). Con-
straints (4.23) and (4.25) control the transmission line failure at the beginning of each year,

while constraints (4.24) control it during time periods within each year.
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Vi < VBufmYim Vi€ T heH,t €T, weQ (4.26)
ke

Ziw <Y _abp Yy VieIheH teT,weQ (4.27)
ke

Constraints (4.26) restrict the availability of V2G electricity flow based on electric
vehicles inclined to be discharged at each cell of the network, while constraints (4.27)
restrict the RES electricity flow based on RES size and electricity generation efficiency as

well as the solar radiation availability.

Xrihtw

m

{0,1} VreR,ieZ heH,te T, we14.28)
Bintw, Hinteo, Srintw, Pintw € 27T VreR €T, heH, teT,we (429
Grihtun Erihtw7 Zihtwu (430)

V;htwa Rihtw

v

0 VreR,i€eZ,he H,iteT,we

Constraints (4.28) define the binary restriction for the second-stage decision variables,
while constraints (4.29) through (4.31) define standard integrality and non-negativity con-

straints.

4.2.3 Model Linearization

McCormick Envelopes are a type of convex relaxation used to define the convex en-
velopes of the bilinear function/term on the rectangular domain. Since solving non convex

problems, which lead to multiple local solutions, is a complicated task, the non convex
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function is transformed into a convex function by relaxing the parameters on the prob-
lem. Relaxing the bounds through a convex relaxation decreases the computational burden.
Having a tighter relaxation that is still convex will provide a lower bound that is closer to
the solution. The McCormick Envelope is one particular kind of relaxation that guaran-
tees convexity and tight bounds simultanously. McCormick relaxation is a widely used
approach to linearize bi-linear terms when the lower bound and an upper bound of each
bi-linear variable are known [78].

Based upon McCormick relaxation method, also known as McCormick envelopes,
three linearization techniques are used to solve model [NEV]. The first technique, referred
to [LEV1], is based on the standard McCormick relaxation. The second technique, re-
ferred to [LEV2], divides the domain of bi-linear variables into a set of uniform partitions.
In addition to uniform partition of the domain of bi-linear variables, a new set of binary
variables are introduced into the third technique, referred to [LEV3]. Recognizing a new
decision variable Q := {Qinw frer icThernteTwen 88 Qrintw = (Grinw)?, the following

bi-linear set is determined:

Q:= <(Q”htw’ Grintw) € Ry : Qrintw = (Grintw)”, Gine < Grintw < i Vr € R, (4.31)

z'eI,he’H,teT,weQ)

where g4, and g4, are, respectively, the lower bound and upper bound of the amount of
power flow from the PG to network cell 7 in time period h of year ¢, i.e., G, inw, € [0, g174*],

under different demand scenarios and segments of charging prices. Model [ELV1] replaces
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all squared instances of variable G, i.€., (Grint)?, With a new variable denoted as
@ rintw 10 constraints (4.23) through (4.25). In addition, the following constraints are added

into model [ELV1]:

> Quine =Y 205,Grine — (9l)? Vi€ heHteT,weQ (432

reR rerR
> Quine = Y205, Grine — (95)° Vi€ heHteT,weQ (433
reR reR
> Quine <Y 9hiGrinew + > 9oniGrintw — Glingie Vi €T, h € H, (4.34)
reR reR reR

teT,we

Based on previous studies [10, 102], the accuracy of the standard McCormick relax-
ation is enhanced by dividing the domain of bi-linear variables into a set of uniform par-
titions. Model [LEV2] divides the domain of Gz, into set £ of uniforms partitions as

follows:

[—1 ,

giLhtl = giL/1t+(ggzt_gz‘Lizt)W VieZheH,teT,lecLl
[ ‘

gi({ztl = gz‘LhtJf(gglt_gz‘Lht)m VieZheH,teT,lecLl

where g%, and g7, are the lower bound and the upper bound of partition [, VI € L,
respectively. It is clear that the lower bound and the upper bound of the first and last
partitions of G, respectively, are its original lower bound and the upper bound, i.e.,
i = 0and gjy, 0y = gini®. Model [ELV2] replaces all squared instances of variable
Grintw With Qins, in constraints (4.23) through (4.25) and, consequently, the following

constraints are added into model [ELV2]:
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L
Gint

L
Gint

Y

IN

IN

IN

IN

Z GinetGrintes + Z GiniGrintw = GiuGinn Vi € I,h € H, (4.35)

reR reER

teT,welel

> GhuGrines + Y 9inGrines — Gy Vi €T, h € H, (4.36)
reR reER

teT,weQleLl
> GhuGrints + Y 9iGrines — GGl Vi €T, h € H, (4.37)
reR reR

teT,weQlel
Zg%thrihtw + Z GiniGrintw = iy Vi € I,h € H, (4.38)
reR reER

teT,welel
Grintw < 95y VreRIEL,heH teT,weQle Ll (4.39)

Grintw < 9%, VreR,€eT,heHte T, we N leL (4.40)

To further increase the accuracy of the standard McCormick relaxation, i.e., better

bounds and, consequently, lower gap between bounds, a new set of binary variables U,.;x4.,

is introduced into model [LEV2]. These binary variables are generated for

activating/deactivating generated partitions/search regions. In other words, They guarantee

the activation of only one generated serach region at any time. This techniques was first

introduced by Castro [19], which is known as piecewise McCormick relaxation. Model

[ELV3] replaces all basic and squared instances of bi-linear variable G, with new vari-

ables denoted as G,;py. and Q,ins., respectively, through the whole model. In addition,

the following constraints are added into model [ELV3]:
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Grints = > Grins Vr €RGELhEMH, L €T, weN (4.41)

lec

S Unihie = 1 ¥reRieLheH teT,we (4.42)
lec

Uittt < Grintw < UrintiwgyVr € Ryi € L,h e Hit € Tl € L,w € (4.43)
Uittt < Grintio < Urinting V7 € Ryi € T,h € Hot € Tl € L,w € @4.44)
Z Qm'htw Z Z Z (gl'l;zthrihtlw + gi[;ztGrihtlw - giliztlgi[;btUrihtlw>Vi S I; (445)
reR reR leL

heH,teT,we
Z Qrivtw = Z Z (ggzthrihtlw + 954 Grintiw — ggztlgg;tUrihtlw>Vi €Z, (4.46)

reR reR lel

heH,teT,we

Z Qrihtw Z Z (ggzthrihtlw + gﬁztGrihtlw - ggztlgi[l/LtUrihtlw>Vi € Ia (447)

reER reR IEL
heH,teT,we

IN

IN

Z Qrihtw Z Z (gz'I;zthTihtlw + ggztGTihtlw - giliztlggbtUrihtlw>Vi S I; (448)

reR reR lel
heH,teT,we

Y
o

Grintiw VreR i€ heH,teT,weQlel (4.49)

m

Usintiw {0,1} VreR, €L, heH,teT,weQleLl (4.50)

It is worth noting that there is no method to estimate |£| as a function of problem com-
plexity. On the other hand, there is a need to provide a fair comparison with commercial
solver. The following proposed formula guarantees the minimum of two partitions to take

the benefits from piecewise relaxation scheme:
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«

L] =1+ [—('Ui )

]

where @ = 1.8F4. In addition, v; and v; indicate the number of non-partitioned and
partitioned variables, respectively. Since preliminary investigations indicate that model
[LEV3] is capable of providing superior relaxation with lower gap compared to model

[LEV1] and model [LEV2], model [LEV3] is utilized to linearize model [NEV].

4.3 Solution Approach
Minimizing uncapacitated facility location problem has been shown to be a strongly
NP-Hard problem [27]. The problem addressed in this research can easily be displayed as

a reduced version of the problem under the following conditions:

e only one time period is considered, i.e., |H| = 1 and [T| = 1;

e there is only one demand scenario, i.e., || = 1;

e clectricity demand is fulfilled primarily by the PG (Z;p, & Vipeo = 0Vi € Z)h €
H,teT,weQ);

e there is no restriction on PG consumption and, consequently, no power shortage;

e charging price is not dependent on power usage in each time period (|R| = 1); and,

e only type 1 charging station is considered, i.e., |/C| = 1. Then, no battery activities
are considered at charging stations, i.e., H;ni, Sihtw, Pintw & Bing, = 0Vi € Z,h €

H,teT,w e

Therefore, it can be concluded that the problem investigated in this research is also

strongly NP-hard, and there is no guarantee of solving this problem optimally in polyno-
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mial time. This being the case, we focus on developing a Sample Average Approximation
(SAA) method enhanced with a Scenario Decomposition (SD) algorithm which is accom-

panied by a Rolling Horizon (RH) strategy.

4.3.1 Sample Average Approximation

Electricity demand of network cells (d;n4,) differ significantly due to variable electric
vehicle flows at different cells on different time periods (f;,;) as well as variable percent-
ages of electric vehicles charged under different scenarios on different time periods (9ps.,),
i.e., dintw = Mhtwfine Vi € Z,h € H,t € T,w € Q. Therefore, an extremely large number
of scenarios is required to investigate variations in demand. Since the research problem is
NP-hard, computational time increases significantly when a large set of scenarios is con-
sidered. To remedy this computational challenge, the SAA method is proposed so that
the expected electricity supply network cost of the stochastic problem is approximated by
a corresponding sample average function. The problem is solved by deterministic opti-
mization techniques under the sample average approximation. The procedure is repeated
with different samples until a stopping criterion (a pre-determined optimality gap) is satis-
fied. The SAA method has been implemented extensively to solve large-scale supply chain
network flow related problems including [20], [105], [106], [120], and others. Interested
readers are reffered to the studies performed by Kleywegt et al. [62] in relation to the
proof of convergence properties of SAA and Norkin et al. [86], [85], and Mak et al. [75]
in relation to the evaluation of developed statistical inference of SAA (e.g., validation and

error analysis, stopping rules).
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Electricity demand of network cells, d;;,, follows a normal distribution for each net-
work cell 7 at each time period h of year t. The SAA method generates set N of random
samples n with realizations of uncertain parameters (n € N and |[N| < |€]) to approxi-
mate the objective function value of the second-stage problem as follows:

EQ(Y,w)] :== —= Z@Yw

neN

where Q(Y,w") is a solution of the second-stage problem for a given value of Y under

scenario w”. Problem [LEV3] is now approximated by the following SAA problem:

Minimize {Yj\”/ = Z Z Z (@/JithZkt \./\f\ Z Q(Y,w"

€L kekK teT neN

As the sample size increases, the optimal solution approximated by the above equation
converges with probability one to an optimal solution of the original problem [LEV3] [62].
By solving the SAA problem within an absolute optimality gap 6 > 0, the sample size |\
is estimated to guarantee an e-optimal solution to the true problem with probability at least

equal to (1 — «) as follows:

3 2
N1 = 2% (T T 00s2) ~ toga

where € > 4, a € (0,1), and ¢2,,, is a maximal variance of certain function differences
[62]. It is worth noting that choosing sample size |[N| is a trade-off between the solu-
tion quality and required computational time. The above equation provides a conservative

sample size estimation for practical applications. In each iteration of the SAA method,
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valid statistical lower and upper bounds are provided for the original problem [LEV3] and
the process terminates when the gap between aforementioned bounds falls below a pre-
determined threshold value. The following steps briefly summarize the SAA method to

solve problem [LEV3].

Step 1: Generate set M of independent percentage scenarios of electric vehicles
charged in network cells, each of size |V, i.e., {Mhw! , Mhuw? , ...,nhtww}, Vm €
M,h € H,t € T. Then, solve the corresponding SAA for each generated sample
consisting of || realizations of independently and identically distributed (i.i.d.)
random scenarios. The optimal objective function value and the optimal solution are
denoted by Y} and Y, respectively. The optimal objective function value of the

m!" replication is obtained as follows:

Y = Z Z Z (VikeYire) + W1| Z Q(Y,w")

i€l ke teT neN
Step 2: Compute the average of all optimal objective function values obtained from

the SAA problems, Y3/ as follows:

_ 1
M _ m

where, YA provides a statistical lower bound on the optimal objective function value
for the original problem [LEV3] [86]. Since Y}, Y4, ..., YA generated samples are

independent, the corresponding variance of Y}/, i.e., U?{M, is given by:
N
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2 Y Y)
i <|M|—1|M| ZVI(N N

Step 3: Generate set A including larger sample size (|[N'| > |N|) to compute
the estimated optimal objective solution of the SAA method [62]. This estimator,
which is the upper bound of the optimal solution on the generated sample size |N”|,

is obtained by one of the solutions of Y, as follows:

Yar(Ta) = D) > (ViweYiwe) + \/\/’] > QYW

i€Z keK teT neN’

In each iteration, the estimator upper bound Y~ (Y,;) is updated. The variance of

this estimator upper bound is calculated as follows:

agv,@M):(W, STATT 2 2020 2 (W) + Q) — Yo ()

neN’ €T ke teT

Step 4: Compute the SAA gap, Gap ), and the variance of this gap, UzGan,/w)’

using the estimators determined in Steps 2 and 3.

G(Lp(N”/\//) (}7) = YN’(?M) — ?%
o2 = J%/,(?M) + 0'%%

Gap )

The confidence interval for the optimality gap is then calculated as follows:

1/2
YN’(YM) — Yj\v-l -+ ZQ{UJQ\//(YM) + 0'3%}
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with z,:= ®71(1 — a), where ®(z) is the cumulative distribution function of the

standard normal distribution.

Step 5: Define the best solution among the solutions of Y,;(Vm € M) that represents

the lowest upper bound Y (Y5y).

4.3.2 Scenario Decomposition Algorithm

The SAA method requires to solve a two-stage stochastic programming model of | V|
scenarios. Depending upon the size of |Z|, ||, and |7, the problem might still be con-
sidered computationally expensive to solve by SAA due to memory limit for solving NV
scenarios of the problem. Since decomposition-based methods are used to divide a mster
problem into smaller and more manageable sub-problems [81, 2], each problem scenario of
SAA is solved with the help of a Scenario Decomposition (SD) algorithm accompanied by
the Lagrangian Decomposition (LD) scheme on the bases of novel Lagrangian multiplier
updating strategy. As the first rigorous algorithmic procedure, the SD algorithm has been
successfully applied for various application fields including production planning [131],
maintenance and operations sceheduling [13], cargo loading [113], and many mores. In

the following, the algorithmic steps of SD accompanied by LD are explained in detail.
The brevity of notation contributed in the [NEV] model is represented as follows:

z = Minimize (cx + g p”(qy”)) (4.51)
X’y
neN
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subject to;

Ar < b (4.52)
Ur+Vy" < f° Vn e N (4.53)
y' e Y VneN (4.54)

r € {0,1}" (4.55)

y" > 0 VneN (4.56)

where ¢ and g on the objective function are n- and p-dimensional vectors, respectively;
b and f on the set of constraints (4.52) and (4.53) are m- and g-dimensional vectors, re-
spectively; and A, U, and V' are matrices of mxn, gxn, and g x p dimensions, respectively.
cx represents the establishment and development costs of charging stations (i.e., first-
stage costs), while ) . p"(qy") represents the hourly operational costs (i.e., second-
stage costs). The set of constraints Az < b represents constraints (4.2)-(4.4) in [NEV]
model, while the set of constraints Ux + Vy"™ < f" represents constraints (4.6)-(4.9),
(4.13), (4.14), (4.18), (4.21), (4.22), (4.26), and (4.27). Finally, set Y denotes the rest
of constraints in [NEV] model, i.e., (4.7), (4.10)-(4.12), (4.15)-(4.18), (4.19), (4.20), and
(4.23)-(4.25). Constraints (4.55) and (4.56) define binary restrictions and non-negativity
constraints domain, respectively.

It is worth noting that this problem has a special block-angular structure which can
be decomposed to a mster problem and several independent sub-problems. In relation to
multi-stage stochastic optimization problems, one of the most commonly techniques im-

plemented is LD [34, 18], which decomposes the problem based on time-stage. In the
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first step of the SD algorithm, a set of copies of the first-stage decision variable, i.e.,

{z' 22, ..., W 1 is generated and, consequently, part of the problem is re-written as fol-
lows:
z = Minimize Z p(cx”™ + qy™) (4.57)
oy neN

subject to;
Az™ < b VneN (4.58)
Uz"+Vy" < f" VneN (4.59)
y" e Y VneN (4.60)
" = gt Vn € M\|NV| (4.61)

Regarding relaxed constraints (4.61), Lagrangian relaxation is the problem of finding

2™ and y™ Vn € N as follows:

[SDEV] D(\) = Minimize »_ p"(ca"+qy") + Y  X"0" (4.62)

X,y

neN neN
subject to;
Az™ < b VneN (4.63)
U™+ Voy* < " VneN (4.64)
y' e Y Vne N (4.65)

where 0" = (2" — z""1) ¥n € N\|N| and \ is (|N| — 1)-dimensional vector. In

addition, Lagrangian dual is to find \ as follows:
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2rp = Maxg\mize D()\) (4.66)

Based on duality theory, z > z;p [42], particularly for non-convex cases, z > zjp,
which implies the existance of a duality gap [18]. One important property of Lagrangian
dual problem (4.66) is that it is a convex non-smooth program, which splits into indepen-

dent sub-problems based on each scenario n. Each scenario sub-problem is presented as

follows:
D"(\) = Minimize » p"(cz" + qy") + h"(N)a" (4.67)
e neN
subject to;
Az™ < b (4.68)
Uy + Vot < f" (4.69)
yt e Y (4.70)

where D(X) = > -\ D"(A) and h"(X) is given as follows:

(

A ifn=1

R"(N) = ¢ _\VI if n=|N| 4.71)

A" — A1 otherwise
\
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Although it is computationally convenient to solve, the decomposition framework is
not capable of solving the original full-space problem. However, it is widely known that
Lagrangian dual represents a relaxation of the original problem for any given set of La-
grange multipliers [42]. This being the case, it is focused on finding better multiplier sets,
i.e., multipliers yielding tighter relaxation to the original problem, that approximate the
solution of Lagrangian dual to the solution of the full-space problem.

In this study, we use the most common technique called sub-gradient for updating the
Lagrangian multipliers. This technique consists of an iterative method in which at a given
iteration r, with a current set of Lagrangian multipliers A", a step is taken along the sub-
gradient of D()). Let consider d” the sub-gradient vector of dimension (|2| — 1) with

components given as V" = z — """ Vn € N\|N|, where 2" V¥n € N is the

solution of Lagrangian dual given \". The Lagrange multipliers are updated using the

sub-gradient information as follows:

 UB- LB
ZneN(dnr)Q

AL =\ A" VYneN 4.72)

where U B is an approximation to the optimal value for z and LB" = D(\"). The term
" € (0,2) is used to correct the error in the estimation of the true optimal value. The
updating procedure continues until any stopping criteria is met.

One possible feature of the proposed algorithm is the particular heuristic that uses in-
formation derived from the solution of the Lagrangean dual problem to derive a feasible

solution and a valid upper bound to the full-space problem. It should be noted that it is not
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computationally demanding to calculate an upper bound for the full-space problem, once
a first-stage solution is available. This is mainly due to the fact that for a fixed first-stage
solution, the full-space problem becomes decomposable in scenarios.

The heuristic is based in the following formation rule. Consider a given iteration r.

First, we calculate 7" as follows:

o= Z Pra™t — Z P*(1—2z™") (4.73)

neN neN

If 7" > 0, the investment is selected to compose feasible solution. The time period
for the selected investment will be the earliest among the scenarios where the investment
was decided. We choose the earliest time period as the one to be implemented based on the
observation that the costs incurred by recourse actions are typically larger than the increase
in first-stage costs due to investing earlier in a given project. In addition to that, one might
notice that the existence of more logistic options allows the system to possibly reach more
efficient and less costly logistics, which yields economics of scale.

Since we are using a heuristic to generating solutions based on information that comes
from scenarios individually, it might be the case that the solution generated is not feasible
for the full-space problem. If this is the case, then we use integer cut to remove this
infeasible solution from the search space of the relaxed dual. Let X; = {j|z; = 1} and

X7 = {j|z; = 0}. Then, we can write the integer cut as:

dai+ > (1-z) > 1 (4.74)

J€Xo JEXL
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and add it to every scenario subproblem. We then solve again the Lagrangean relaxation
and proceed with algorithm execution. Pseudo-code of the basic Scenario Decomposition

Algorithm is provided in Algorithm 1.

Algorithm 1: Scenario Decomposition

Input: Termination criteria: iter,,qan, 1Meén e, and €
Output: Upper bound z(z");

Step 1: Initialize: v+ 1, UB 4+ 400, LB + —o0, A™7";
Terminate < false;

while (Terminate = false) do

Step 2: Solve Lagrangian dual problem:

for (i=1 to N) do
Solve each subproblem (4.62)-(4.67);
Combine subproblem solutions and calculate lower bound LB™=3" .- D"(A7);
if LB" > LB) then
LB =LB";
Store solution for generating cuts later;
end
end
Step 3: Generate first-stage solution and derive UB:
Apply the proposed heuristics for generating a first-stage solution x";
Obtain z(z") evaluating 2" in (4.51)-(4.56). If 2" is not feasible, add the integer cut (4.74) and return
to Step 2;
if z(2") < UB then
‘ UB = z(z"):
end
Step 4: Lagrangian multiplier update:
Update Lagrangean multipliers using (4.47);
Return to Step 2;
Step 5: Terminate:
if UB — LB < € or any other termination criteria then
Return =", UB ;
terminate +— true;
else
‘ rée—r+1;
end

end
return z(z")

4.3.3 Rolling Horizon Heuristic Strategy
The SD algorithm demonstrates high-computational capability in solving small- to

medium-size problems. However, SD is not capable of providing a reasonable solution
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for large-size problems. This motivates us to explore additional enhancement techniques
with different variants of Rolling Horizon Heuristic Strategy in order to improve the con-
vergence and stability of the SD algorithm, i.e., solving sub-problems faster.

It is worth noting that Algorithm 1 requires solving a deterministic and multi-time
period problem [SDEV] for |A/| times, which is still considered as a challenging problem
from a solution standpoint. One way to tackle this problem is to split the planning horizon
(i.e., years and hours) into multiple parts and solve those parts sequentially until all are
investigated. This being the case, this study implements a Rolling Horizon (RH) heuristic
that decomposes problem [SDEV] into a series of smaller sub-problems comprising a few
consecutive hour-year combinations from the overall planning horizon. The algorithm
terminates when all hour-year combinations of the planning horizon are investigated. This
approach shows efficiency and good converging properties in solving problem instances
with relatively a long time horizon. Interested readers are referred to the studies performed
by Balasubramanian and Grossman [11], and Kostina et al. [63] to learn more about the
RH heuristic.

Three different variants of the RH heuristic are proposed in an attempt to find high-
quality solutions from solving problem [SDEV] in a reasonable amount of time. The first
variant of the RH heuristic, i.e., [RH1], decomposes problem [SDEV] on yearly basis,
while the second and third variants of the RH heuristic, i.e., [RH2] and [RH3], respec-
tively, decompose problem [SDEV] on hourly and a combination of hourly and yearly
basis, respectively. A pseudo-code of the basic Rolling Horizon heuristic is provided in

Algorithm 2.
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Algorithm 2: Rolling Horizon Heuristic

Input: Termination criteria: iter,,qz, tiMmemqz, and €;
Output: Upper bound z(z");

Step I: Initialize: r <— 1, t(, <= 0, hj <= 0, M", Q" ;
terminate < false;

while (terminate = false) do
Set:

ez" € {0,1}andy™ € Z" forty <t < t{j+ M" and hj < h < hj, + Q"
o0 <z"<landy" € R*fort>t)+ M"andh > hj+ Q"
Solve the approximate subproblem [SDEV(r)] using CPLEX
if (to > |7|) then
‘ terminate < true;
else
‘ Fixing the value 2", y" for t < tj and h < hy ;
end
r—r+1;

end
return z(z")

Let [SDEV(r)] be an approximate sub-problem of the RH algorithm at iteration r.
Define #{; and hJ as the starting time period for years and hours, respectively, while /" and
(" are the number of time periods of years and hours, respectively, for each sub-problem
r. In the RH heuristic, either a set of fixed or different values of A" and ()" is considered
across different iterations of the algorithm. For a particular scenario n, an approximate

sub-problem [SDEV(r)] is solved by setting the variables as follows:

2" € {0,1} & y" € ZT for t{y<t<tyg+M" & hj<h<hi+Q"
0<z"<1&y"e€RT for t>th+ M &h>hj+Q"

After solving the sub-problem, the values of variables are fixed as 2" = 2" ! &

n

y»" =y fort < t§ & h < hj, and step size r is updated. It is worth noting that by

varying parameters t(,, hy, M, and )", a number of different variants of the RH algorithm
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might be developed. Figures 4.2 through 4.4 provide an illustration of solving a three-year
and four-hour time period problem using three different variants of the RH heuristic. In

terms of preliminary experiments, [RH3] provides better computational results to solve

problem [SDEV(r)] efficiently.

Hour Hour
h::‘l— Integer h.:2 hT} 11':4 12'41— Fixed h.=2 hT3 h‘?l
0 6—6—0 0 0 0 o
. — Relaxed — L - g — Integer — -
e O—0—0—0 im0 0 0 O
+— Relaxed — + > ie— Relaxed — >
t=3 O O O Q =3 Q Q Q_

(a) Iteration 1 (b) Iteration 2

h=

]

(c) Iteration 3

Figure 4.2: Illustration of a rolling horizon strategy for [RH1]

4.4 Computational Study

This section focuses on solving model [LEV3] using hybrid Sample Average Approx-
imation based Scenario Decomposition algorithm to draw managerial insights obtained
from a real-life case study. This section is composed of three sub-sections. First, a brief
description of the data used to generate instances along with scenario generation are pro-

vided. Second, the efficiency and effectiveness of model [LEV3] and proposed algorithms
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Figure 4.3: Illustration of a rolling horizon strategy for [RH2]

Hour Hour
h=4

H—lnteger h|:2 Relaxed hT3 > '4— Fixed —}L—Integer—hD}— Relaxed—»

1—1‘ . . I‘— t—l—. .. .. .—

—>«—Relaxed —b

1 1
-~ — Integer —»m— Relaxed——— 51 Fixed Integer
D ol I = = s
1

Relaxed —»

. ;Relaxed . . i— . —6_ Integer ‘ .

(b) Iteration 2

(a) Iteration 1

Year
o
S
[=9
E
5
=

Integer —n

6o @

(c) Iteration 3

Figure 4.4: Illustration of a rolling horizon strategy for [RH3]
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are evaluated in the electricity supply network problem. Finally, a case study, provided for
Washington, DC as a testing ground for the analysis, explores the potential connections of
limited power resources in power management to satisfy network demand. In addition, the
impact of demand variation, power grid disruption, and minimum power requirement to
establish charging stations on the overall electricity supply network design and cost are an-
alyzed. Managerial insights will be derived from this case study in the form of perspective
and understanding. The All numerical experiments are coded in GAMS 24.2.1 [39] on a
desktop computer equipped with an Intel Core i7 processor 3.50 GHz with 32 GB RAM.

The optimization solver used is ILOG CPLEX 12.6.

4.4.1 Data Description

Density of electricity demand in a network cell at a particular time period is determined
based on the number of major roads and, consequently, hourly projected flow of electric
vehicles on the network cell (f;n¢) [92] as well as the percentage of electric vehicles that
require to be charged under a demand scenario (7,4,). Other factors including the density
of population, hospitals, commercial buildings, and colleges located nearby major roads
have a significant effect on projecting electric vehicle flow. The percentage of electric
vehicles charged in a particular time period (7)) is set to 40%, while the discharging rate
(Bhe) 1s set to 5%.

The network, known as a grid network, is divided into n x m network cells, i.e., |Z| =
n x m, where each cell contributes an area of approximately 1.0 mi®>. The data related to

cell-specific parameters are generated only for those cells that include a passing road(s);
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otherwise, the values of parameters related to a cell without road passing are set to zero.
Therefore, a network cell with a passing road(s) is considered as a candidate location to
establish a charging station. Long term investment decisions are made up to 10 years, i.e.,
|7| = [2, 10], while short term operational decisions are made up to 360 hours (15 days)
as a representative of each year, i.e., |H| = [12, 360].

The maximum limit of power line temperature before disruption (?74%) is set to 200°F
[4]. Since the power flow through transmission lines has a considerable impact on line

temperature, the maximum limit of power line electricity before disruption (g/{*), which is

max

adopted from [31], is restricted in terms of ¢};¢*. With respect to commercial and industrial

time-of-use (TOU) rate as well as the amount of electricity usage, unit electricity price of

charging stations is determined based on five segments of charging price, i.e., |R| = 5.
Each segment r represents a particular range of power availability with its own charging
price. Although a double exponential hazard function can plot utilized powers and charging
prices, for simplicity sake, an step function determines charging prices for pre-determined
segments of utilized power. Subsequently, hourly electricity price plan for the PG (/) is
determined. In addition, hourly electricity price plan for V2G power (c}’;g ) 1s determined

with respect to [91, 104]. It is clear that the upper bound of the last segment of charging

price, i.e., UB)g), is equal to the maximum limit of power line electricity, i.e., UBg| =

max
Yint -

Two types of fast electric vehicle charging stations are considered to establish on net-
work cells, i.e., |KC| = 2. The construction cost of establisning type 1 and type 2 charging

stations is set to $50,000 [1] and $500,000 [40], respectively. Therefore, the annual estab-
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lishment cost of a charging station, which is established on year ¢, is determined in terms
of the ratio of the investment on planning horizon (|7 | —t+ 1) to lifetime of the established
charging station of type k (L7 ), i.e., (%) x 50,000 and (%) x 500, 000. In addi-
tion, development cost is a percentage of annual investment cost, which is incurred mainly
from growing a current service and/or introducing a new service along with marketing
analysis, developmental engineering, and customer surveying.

The information on uses of solar radiation for target city is used to determine available
electricity obtained from solar panels during a day in each cell (b,,). In addition, the size
of utilized solar panels for charging stations (a!,) is assumed to be 100 m?. The minimum
power requirement to establish a charging station of type 1 (p{;)/type 2 (p5;) in a network
cell is 5/10 MW. The unit storage cost of a battery in a type 2 charging station (cj,) is
set to 0.02 $/hr. The average unit power required to charge/obtained from discharge each
electric vehicle (\/7) is set to 35.6 kWh. Finally, we set the maximum available batteries
as well as the number of plug-in and plug-out at charging stations as u; = 40, ¢i" = 10,
and ¢/"* = 10, respectively. It is worth noting that all costs and benefits are calculated and
then adjusted for inflation.

There is uncertainty on 7, so that it varies significantly from hour to hour due to dif-
ferent levels of remaining charge on electric vehicle batteries, car owner’s willingness to
stay at a charging station, and charging/discharging time. This requires a large set of sce-

narios for the estimation of hourly electricity demand. Based on a historical data of target

city, Monte Carlo simulation is implemented to generate a large number of scenarios with
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equal probabilities 1/|N| for n,,, where N is a set of sample scenarios. The generated

samples are independent and identically distributed (iid) random variables.

4.4.2 Experimental Results

Since Washington, DC is considered as one of strong-growing electric vehicle popu-
lations over other major metropolitan cities in US [92], it is chosen as a testing ground to
visualize and validate the modeling results. In addition, it has reputation as one of the na-
tion’s most environmentally conscious cities. The electricity supply network representation
along with demand distribution for Washington, DC is shown in Figure 4.5. The network

as a grid of size 12 x 11 is divided into 132 network cells, i.e., |Z| = 132. Five-year as

long term investment decisions along with 24-hour in each year as a representative of short
term operational decisions are considered, i.e., |7| = 5 and |H| = 24. The information
on uses of solar radiation for Washington, DC in year 2010 is used to determine available
electricity obtained from solar panels during a day [83]. A historical data of Washington,
DC is considered into account that helps in predicting the future electric vehicle charg-
ing/discharging percentage. Finally, Monte Carlo simulation is implemented to generate a

large number of scenarios.

A sensitivity analysis is performed to determine how different values of an indepen-
dent parameter impact a particular dependent variable(s) as well as the overall electricity
supply network cost and design, under a given set of assumptions. Yearly decisions on
established charging stations determine the electricity supply network design. Therefore,

a considerable changes on critical factors definitely result in changes on network design.
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Figure 4.5: Network representation and geographical demand distribution of Washington

DC [6]

In particular, the impact of demand variation, power grid disruption, and minimum power
requirement to establish a charging station on the overall electricity supply network design
and cost are analyzed.

All sensitivity analyses are performed with respect to real life case study developed for
Washington, DC (base case study). Figure (4.6) shows five-year network design of long
term investment decisions in relation to the base case study. A noticeable expansion of
charging stations in Washington, DC is observed from year 2018-2022. Moving forward,
the number of established charging stations is increased due to increase in demand so that
the number of charging stations of each type is increased around 50% after five years. In
addition, the results indicate that most charging stations are established on the cells located

on downtown area of Washington, DC due to high density flow of electric vehicles on those

cells.
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In the following, the impact of critical parameters on the electricity supply network
cost and design are determined. We denote F,;py, = (Z(TER,Z'GI, heH weR) PuwErint) /Y]
as a representative of the average electricity flow from the PG to charge electric vehicles
(not including batteries) at any type of charging stations established at cell © € Z on hour
h € H of year t € T under segment r € R of charging price and demand scenario w.
Moreover, |Y,| is considered as the number of charging stations of any type established at
the electricity supply network in a particular year ¢. Likewise, Z it and Vi, are represen-
tatives of an average of hourly electricity power supplied by solar power and V2G power,
respectively, related to any type of charging stations established at any network cell. In
addition, Bjp, = ( eI herwe) Bint,) /|Y}] is considered as a representative of the av-
erage number of batteries, which are hourly utilized at a type 2 charging station established
at any network cell. Likewise, Hiptos Srintw, and Py, are considered as representatives

of the average number of batteries, which are hourly stored, charged, and discharged at a

type 2 charging station established at any network cell, respectively. In addition, |Y}]| is
considered as the number of type 2 charging stations established at the electricity supply

network in a particular year ¢.

4.4.2.1 Impact of Demand Variation

We first investigate the impact of demand variation or equivalently electric vehicle
charging percentage variation (7)) and/or electric vehicle flow variation ( fj;;) on utiliza-
tion of diversified power resources and, consequently, electricity supply network design

and cost. Since variations on 7, and f;; are on the same direction, the impact of demand
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variations on different time periods are determined only by 7, with respect to the mean
(M) and variance (o3,) of np, in time period h of year ¢ under different scenarios w.
In this experiment, three different variation levels are generated for o7, with respect to the
same 7,,: (a) o2, = 5%, as low demand variation level; (b) o2, = 15%7,, as medium de-
mand variation level set to base case study; and (c) o7, = 50%7,, as high demand variation
level. With respect to normality assumptions for 7, Monte Carlo simulation techniques
are implemented to generate the scenarios for those different variation levels in which 7,,
is independent for each time period and varies in the range (7, + 07,) Vh € H,t € T.
Figure 4.7 demonstrates the impact of 7., on utilization of diversified power resources
on a charging station. As evidenced from the results, demand variation has a direct rela-
tionship with utilized power resources so that any increase in 7,4, results in an increase on
utilization of a power resource(s), i.e., Frintw, Zintw, Vintw, and ABjps,. In addition, a set
of time-dependent parameters including solar radiation availability, charging prices, and
electric vehicle flows critically affects the hourly operational decisions of utilized power
resources, particularly for high demand variation level. As shown by Figure 4.7(d), full-
charged batteries, i.e., AB;j.,, satisfy main portion of electricity demands related to type
2 charging stations so that ABjpu, < (Grinw — Erinw), V71 € R,i € T,h € H,t €
Tw € Q| Yy = 1. Irrespective of battery demand of type 2 charging stations, elec-
tricity demands are primarily satisfied through the PG (E,int) and V2G power (Vintw)s
shown by sub-figures 4.7(a) and 4.7(b) of Figure 4.7, respectively, during solar radiation
unavailability, low-charging price hours, and low electric vehicle flows, i.e., 1.00 AM -

4.00 AM, 9.00 AM - 12.00 PM, and 9.00 PM - 12.00 AM. Alternatively, major part of
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electricity demands is satisfied first through solar energy (Z;xs.), shown by Figure 4.7(c)

and, then primarily through V2G power (V;14,) and the PG (E,.;xs.) during solar radiation

availability, high-charging prices, and more electric vehicle flows, i.e., 10:00 AM - 2:00

PM.
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Figure 4.7: Impact of electric vehicle charging percentage variations on utilization of

power resources
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Demand variations have significant impact on battery activities of type 2 charging sta-
tions, i.e., the number of charged, discharged, and swapped batteries and, consequently,
the number of stored batteries at type 2 charging stations. Figure 4.8 demonstrates the
impact of 7, on battery related activities of a type 2 charging station on average. High
demand variation level leads to less discharged batteries, i.e., Pip, More charged batter-
ies, i.e., ?Tihtw, more utilized batteries to satisfy demands, Eihtw, and subsequently, more
stored batteries at type 2 charging stations, i.e., H;js,. Contrary, low demand variation
level leads to more electricity flow to the PG to discharge batteries, v P;xs., less electricity
flow from the PG to charge batteries, S, intw, less utilized batteries to satisfy demands and,
consequently, less inventory for full-charged batteries. It is worth noting that the rate of
changes on 5,51, and Py, depends on charging prices as well as the peak/sub-peak hours
of electricity demands.

In summary, variation on 7, highly impacts power resource utilization and, conse-
quently, the network design and cost. There are direct relationship between demand vari-
ation levels, the network design, and the network cost. Finally, the number of established
charging stations is either increased or not changed by high demand variation level and

vice versa.

4.4.2.2 Impact of Power Grid Disruption

A transmission line failure is occurred due to the line overheating as a result of power
flow loading over the line transmission capacity between the PG and a charging station.

Therefore, power shortage might occur to electricity supply network and, consequently,
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penalty cost is imposed to the network in spite of utilizing the maximum available capacity
of other resources. Penalty cost is considered due to either unmet demands or demands
satisfied by an external resource(s). Since the PG capacity, as the main electricity resource
of charging stations, has a critical effect on the amount of utilization of diversified power
resources in different time periods, the impact of power grid disruption for n consecutive
time periods (Gint, = 0 Vh, (h+1), ..., (h+n—1) € H) on the electricity supply network
cost is investigated.

In order to show the impact of power grid disruption on utilized resources and the
network cost, model [NEV] is solved irrespective of power disruption constraints, i.e.,
model [NEV] without constraints (4.21) through (4.25), which is known as model [EV].
Then, after accounting risk aversion, power grid disruption is simulated for a particular cell
1 as follows: power flow from the PG is set to zero during three consecutive time periods
(h+1), (h+2), and (h+3) at model [EV], i.e., Grih+1)w = Gri(ht2)iw = Gri(h+3)w = 0,
when utilized PG power is greater than the maximum allowable power in network cell ¢ at
time period h of year t, i.e., Gripw, (1 — ™) > gi7¢*, or utilized PG powers are equal to the
maximum allowable powers in network cell i for two consecutive time periods (h — 1) and
h,ie., Grih—1)w(l —m) = Iitheay & Gringw(1 — m) = glpee.

Figure 4.9(a) shows the utilization of power resources with respect to power disruption
management (disruption prevention model), while Figure 4.9(b) shows the utilization of
power resources irrespective of power disruption management (disrupted model). Part of
power shortage in the disrupted model is satisfied by other power resources including V2G

power and the RES. During power disruption, the utilization of V2G power reaches to its
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maximum availability compared to the disruption prevention model. In addition, there is
no sensible changes on the RES utilization at both models since it is utilized nearby to its
maximum capacity at the disruption prevention model. The remaining power shortage is
satisfied by an external resource(s), which is considered as penalty cost.

Since the PG is the main resource of charging stations, Figure 4.9(c) shows the uti-
lization of PG power and, consequently, power shortage at both disruption prevention and
disrupted models in order to follow the changes on annual network costs, shown by Figure
4.10. Although the PG utilization almost overlaps each other at both models, power disrup-
tion occurs frequently at the disrupted model, which leads to increase in power shortage,
while power shortage is remained on its reasonable level at the disruption prevention model
due to power disruption management. As a result, annual network costs are improved from
8% up to 16% when power disruption prevention strategy is used in electricity supply net-
work. In addition, total electricity supply network cost is reduced by 12% under power
disruption management, while even 1% improvement in the network cost of electricity

supply network is significant.

4.4.2.3 Impact of Minimum Power Requirement to Establish a Charging Station
This set of experiments study the impact of minimum power requirement to establish
a charging station (p;) on the overall network design and cost. Figure 4.11 illustrates the
impact of the percentage of change in pf; on the number of established charging stations
in a particular year of planning horizon, i.e., Ziel wei Yike, Vt € T. Decrease in pgj, i.e,

a percentage change with negative number, is shown by dash-line, while increase in p{;,
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1.e, a percentage change with positive number, is shown by solid-line in Figure 4.11. There
is an inverse relationship between changes on minimum power requirement to establish a
charging station and the total number of established charging stations so that ) ., . Yix
is either increased/decreased or not changed when p{; decreases/increases.

Based on the impact of p{; and p$; on the network design, demonstrated by Figures
4.11a and 4.11b, respectively, the total number of established charging stations is more
sensitive to changes in p{; in comparison with changes in p§;. Figure 4.12 represents
the total network cost under different changes in p§j and p5; separately. Any decrease
in py; leads to establish more charging stations and, consequently, satisfy more demands.
Contrary, any increase in pj; leads to establish less charging stations and, consequently,
satisfy less demands. On the other hand, more charging stations result in more network
cost due to annual establishment and development cost, while less charging stations result

in more network cost due to unsatisfied demands (i.e., power shortage). There is a trade-

off between the design (i.e., the number of established charging stations) and the cost of
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electricity supply network, which are known as optimal design under optimal network

cost so that any changes on the optimal design (either positive or negative) increases the

network cost. The minimum network cost, shown by Figure 4.12, is obtained by 25% and

75% increase in p§; and p3; related to the base case study, respectively.
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4.4.3 Computational Performance of the Proposed Algorithms

The efficiency and effectiveness of the following algorithms are evaluated by solving
model [LEV3]: the basic SAA method proposed in Section 4.3.1; the SAA method pro-
posed in Section 4.3.2, where each sub-problem is solved using the SD algorithm; and, the
SAA method proposed in Sections 4.3.3, where each sub-problem is solved using the SD
algorithm on the basis of the LD scheme. To simplify the definition of proposed solution

approaches and obtained results, the following notations are provided.

e [CPLEX]: Model [LEV3] solved by CPLEX

o [SAA,,....]: The basic SAA method

e [SAAsp]: The SAA method enhanced with the SD algorithm

e [SAA5p/rpl: The SAA method enhanced with the SD algorithm on the basis of the

LD scheme

In relation to the research problem, there is no benchmark instances available in the
literature. Hence, a new set of problem instances are generated with respect to real life case
study and computational time required by [CPLEX]. Three sets of problem instances have
been generated for comparison purpose: small-, medium-, and large-size instances, where
the case study proposed on Washington, DC is considered as a medium-size problem. In
relation to short term operational decisions, the number of time periods in a year is 12 and
24 hours (around one day) for small-size instances, while it is 24 and 72 hours (1 and 3

days) as well as 168 and 360 hours (7 and 15 days) for medium- and large-size instances,
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respectively. Likewise, in relation to long term investment decisions, 2 and 5 years are

considered for small-size instances, while it is 5 and 8 years as well as 8 and 10 years for

medium- and large-size instances, respectively. All the other parameters are set based on

Section (4.4.1). Table 4.1 represents generated instances for each set of problems in terms

of the size of |Z|, ||, and |7 |, where the deterministic equivalent for model [LEV3] is

indicated based on the number of variables and constraints for each generated instance.

Table 4.1: Problem size of the deterministic equivalent of the model based on the number

of variables and constraints

. Variables Total
Size Instance 17| 7] I71 Binary Integer Continuous Total constraints
1 25 12 2 3,100 4,800 4,800 12,700 11,550
2 25 12 5 7,750 12,000 12,000 31,750 28,950
3 25 24 2 6,100 9,600 9,600 25,300 22,950
4 25 24 5 15,250 24,000 24,000 63,250 57,450
5 50 12 2 6,200 9,600 9,600 25,400 23,100
Small 6 50 12 5 15,500 24,000 24,000 63,500 57,900
7 50 24 2 12,200 19,200 19,200 50,600 45,900
8 50 24 5 30,500 48,000 48,000 126,500 114,900
9 75 12 2 9,300 14,400 14,400 38,100 34,650
10 75 12 5 23,250 36,000 36,000 95,250 86,850
11 75 24 2 18,300 28,800 28,800 75,900 68,850
12 75 24 5 45,750 72,000 72,000 189,750 172,350
1 100 24 5 61,000 96,000 96,000 253,000 229,800
2 100 24 8 97,600 153,600 153,600 404,800 367,800
3 100 72 5 181,000 288,000 288,000 757,000 685,800
4 100 72 8 289,600 460,800 460,800 1,211,200 1,097,400
5 132 24 5 80,520 126,720 126,720 333,960 303,336
Medium 6 132 24 8 128,832 202,752 202,752 534,336 485,496
7 132 72 5 238,920 380,160 380,160 999,240 905,256
8 132 72 8 382,272 608,256 608,256 1,598,784 1,448,568
9 150 24 5 91,500 144,000 144,000 379,500 344,700
10 150 24 8 146,400 230,400 230,400 607,200 551,700
11 150 72 5 271,500 432,000 432,000 1,135,500 1,028,700
12 150 72 8 434,400 691,200 691,200 1,816,800 1,646,100
1 175 168 8 1,178,800 1,881,600 1,881,600 4,942,000 4,474,050
2 175 168 10 1,473,500 2,352,000 2,352,000 6,177,500 5,592,650
3 175 360 8 2,522,800 4,032,000 4,032,000 10,586,800 9,581,250
4 175 360 10 3,153,500 5,040,000 5,040,000 13,233,500 11,976,650
5 200 168 8 1,347,200 2,150,400 2,150,400 5,648,000 5,113,200
Laree 6 200 168 10 1,684,000 2,688,000 2,688,000 7,060,000 6,391,600
° 7 200 360 8 2,883,200 4,608,000 4,608,000 12,099,200 10,950,000
8 200 360 10 3,604,000 5,760,000 5,760,000 15,124,000 13,687,600
9 225 168 8 1,515,600 2,419,200 2,419,200 6,354,000 5,752,350
10 225 168 10 1,894,500 3,024,000 3,024,000 7,942,500 7,190,550
11 225 360 8 3,243,600 5,184,000 5,184,000 13,611,600 12,318,750
12 225 360 10 4,054,500 6,480,000 6,480,000 17,014,500 15,398,550

A proposed solution approach is evaluated based upon the best lower bound obtained

from all solution approaches, i.e., LBp.s. In other words, the percentage deviation (gap)

between the upper bound of

7:th

solution approach (UB;) and LBpg.s is determined as
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Afi(%) = (FE5EER=) % 100% Vi € S, where § = {[CPLEX], [SAAyqsic], [SAAsp],
[SAAsp/pl} and LBpesy = Max{LB;} Vi € S. All proposed solution approaches are
terminated when at least one of the following criteria is satisfied: (a) the gap falls below
a threshold value ¢, i.e., Af;(%) < e and/or (b) the maximum computational time limit,
CT™ is reached. In this study, the stopping criteria are set as ¢ = 1% and CT™** =
3600 s.

Table 4.2 shows the comparative results obtained for proposed solution approaches in
terms of the gap and computational time. Scenario size is set to N = 1,000 for [CPLEX],
while N/ = 20 and A/ = 500 are set for samples with small- and large-size scenarios,
respectively, in relation to [SAAy,;.], [SAAsp], and [SAAsp, 1 p]. In addition, replication
number M is set to 5 for all proposed algorithms. The boldface numbers under 7'(s)
column indicate the best computational time between proposed solution approaches when
Afi(%) < e, Ji € S, while the boldface numbers under A f(%) column indicate the best

gap developed by solution approaches when T'(s) = CT™. The following results are

obtained from Table 4.2 under restricted computational time and pre-determined gap:

e In relation to small-size instances, all solution approaches present results close to-
gether based on the gap and computational time.

e The quality of the solutions obtained from [CPLEX] is significantly improved by
using [SAA;.s;.] for medium-size instances.

e The computational efficiency of the solutions obtained from [SAAp,s;.] is signifi-

cantly improved by using [SAAsp], particularly for medium-size instances.
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e The quality and computational efficiency of the solutions obtained from [SAAsp] is
significantly improved by using [SAAsp,1p], particularly for large-size instances.

e [SAAsp/1p] reduces overall gap reported by [CPLEX] significantly. The overall
gap reported by [SAAgp,1.p] is 9% of the gap reported by [CPLEX].

e [CPLEX] is capable of solving 13 out of 36 instances optimally within the pre-
specified computational time, while [SAAsp, 1. p] is capable of solving all generated
instances optimally, except two large-size instances.

e A significant improvement in computational efficiency of [SAA,s;.] is due to im-
plementing the enhancement technique, which is used to solve sub-problems of
[SAAsp]. Likewise, the computational time reported by [SAAgp,;p] is signifi-
cantly improved by incorporating the LD scheme into the SD algorithm in order to
solve sub-problems of [SAAsp].

® [SAAsp/rp] is capable of solving problems equal or less than halftime of other
solution approaches.

e [SAA5p/rp] outperforms all other solution approaches and presents high-quality

solutions efficiently, particularly for large-size instances.

4.5 Conclusion and Future Studies

This paper proposes a novel disruption prevention optimization framework, which in-
tegrate both long-term planning decisions and short-term operational decisions to design
and manage electric vehicle charging stations on the electricity supply network, over a

pre-determined planning horizon and under a stochastic power demand. A transmission
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Table 4.2: Comparison of the results obtained from [CPLEX], [SAA.s.], [SAAsp], and

[SAAsp/rpl
Size TCPLEX] SAApnoia] SAAS DI SAAsD LD
G A0 TG ATG TG AF® TGl AT TG
1 0.08 32.51 0.14 4274 0.17 45.85 0.10 44.67
2 0.11 61.56 0.24 78.43 0.26 72.51 0.19 79.63
3 0.09 58.94 0.27 76.54 0.25 68.45 0.17 72.58
4 0.48 378.62 0.58 256.42 0.61 182.35 0.36 213.34
5 0.18 59.62 0.15 77.82 0.31 71.25 0.25 77.23
Small 6 0.62 389.24 0.71 261.47 0.34 196.54 0.43 226.47
7 0.72 377.65 0.69 259.71 0.84 183.64 0.52 211.35
8 0.64 1,045.87 0.71 589.61 0.86 484.57 0.89 315.68
9 0.38 145.58 0.45 165.34 0.54 123.28 0.46 136.50
10 0.75 543.21 0.84 415.61 0.71 364.21 0.63 284.41
11 0.52 554.69 0.71 427.54 0.48 374.25 0.51 287.64
12 0.47 1,854.65 0.89 1,254.62 0.67 1,014.27 0.88 471.24
Average 0.42 458.51 0.53 325.49 0.50 265.10 0.45 201.73
1 0.92 28,145.21 0.94 8,745.62 0.54 4,753.21 0.84 2,654.88
2 11.52 crmaer 0.84 9,756.58 0.84 5,476.52 0.63 3,124.50
3 18.55 crmaer 0.67 16,543.88 0.71 8,542.65 0.82 4,563.87
4 20.61 crmaer 0.41 18,524.64 0.94 9,985.65 0.68 6,025.22
5 7.52 crmar 0.88 9,012.54 0.65 5,012.35 0.56 2,964.55
Medium 6 8.63 crmar 0.97 10,245.31 0.92 5,687.57 0.68 3,452.67
7 21.65 crmar 0.77 18,635.74 0.57 9,745.64 0.47 5,047.64
8 oM - 4.62 crmaer 0.93 12,354.62 0.82 8,642.51
9 11.89 crmaer 0.79 9,825.74 0.87 5,478.61 0.78 3,254.87
10 15.33 crmar 0.78 14,563.87 0.86 7,153.44 0.66 4,123.51
11 23.64 crmaer 0.81 19,524.30 0.65 10,632.55 0.89 6,214.51
12 oM - 12.54 crmaer 0.69 13,621.52 0.64 9,256.66
Average 14.03 35,214.52 2.09 17,281.52 0.76 8,203.69 0.71 4,943.78
1 OM - 3.54 cTmaT 0.92 17,523.64 0.64 9,726.54
2 OM OM - 0.81 29,635.24 0.48 10,825.43
3 OM OM 10.35 crmaer 0.61 14,253.68
4 oM OM 12.65 crmaer 0.77 16,352.47
5 OM OM 0.89 28,635.41 0.94 10,235.44
Large 6 oM oM 4.52 crmaer 0.59 12,635.71
7 oM oM 11.35 crmaezr 0.82 15,234.95
8 oM oM OM - 1.23 crmaer
9 oM oM 2.35 crmar 0.65 11,235.96
10 oM oM 7.65 crmaer 0.78 13,654.52
11 OM oM oM - 0.96 25,632.40
12 OM OM - OM - 1.42 crmaer
Average - - 3.54 cTmaT 5.72 32,421.59 0.82 17,648.93
Total average 7.22 17,836.52 2.05 1,7869.00 2.33 13,630.13 0.66 7,598.15

CT" " stands for maximum computational time, i.e., 36000(s).

OM stands for out of memory.

network might be disrupted due to power line overheating as a result of excessive power

flows in a prolonged time. To the best of our knowledge, this study is the first work that

considers power disruption prevention on a transmission network on the basis of a reliable

electricity supply network under demand uncertainty.

A reliable two-stage stochastic MINLP model [NEV] is formulated to determine the

type, location, and time of established charging stations in each year ( long-term planning

decisions) and manage power resource utilization in each hour (short-term operational de-

cisions) of the planning horizon with the aim of network cost minimization under electric-

ity demand uncertainty. The proposed model [NEV] prevents the evolution of excessive
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temperature on a power line under stochastic exogenous factors such as outside tempera-
ture and air velocity. Power resource management include the hourly operational decisions
of electricity flow from the PG, the RES usage, V2G power usage, as well as the number
of batteries charged, discharged (electricity flow to the PG), swapped, and stored. Al-
though model [NEV] is converted to a linear MILP model [LEV3] based on piecewise
McCromick relaxation technique of linearization, model [LEV3] is computationally very
challenging depending upon the number of network cells (|Z|), set of time periods as a
combination of years (|7|) and hours (|#]), and set of scenarios (Jw|), which are deter-
mined by a decision maker(s). To alleviate these challenges and to solve industry-size
instances, we develop an Sample Average Approximation (SAA) method accompanied by
a Scenario Decomposition (SD) algorithm to solve generated sub-problems. The perfor-
mance of hybrid SAA method is improved by integrating Lagrangian Decomposition (LD)
scheme on the SD algorithm in order to solve sub-problems. Computational results indi-
cate that the SAA method accompanied by SD on the basis of LD is capable of producing
consistently high-quality solution to solve realistic large-size instances within reasonable
computational times.

Sensitivity analysis, performed on a case study based upon the road network of Wash-
ington, DC as a testing ground, provides insightful results about the impact of demand
variation, power grid disruption, and minimum power requirement to establish a charging
station on the overall electricity supply network cost and design. In addition, computa-
tional experiments reveal numerous managerial insights for managers to make operational

decisions at the optimum network cost. The following outcome of our data-driven analysis

203

www.manaraa.com



help decision makers to develop a future sustainable power management decision system
related to the electricity supply network with respect to the transmission network failure.
With respect to time-dependent parameters such as solar radiation availability, charging
prices, and electric vehicle flows, a decision maker is able to provide better hourly oper-
ational decisions of utilized power resources to reduce the network cost. A type 2 charg-
ing stations with more available batteries and battery activities is capable of reducing the
amount of fluctuation on electricity demand and, consequently, demand variations can be
under control. The overall electricity supply network cost is reduced more by managing
the permissible amount of power transaction among the PG and charging stations with re-
spect to charging prices, particularly through power disruption prevention management. In
addition, there are some hidden costs related to customer retention, operator unemploy-
ment, and network re-installation as a result of power disruption, which have indirectly
impacts the network cost. Finally, there is a trade-off between the number of established
charging stations and the electricity supply network cost at the optimum point for the min-
imum power requirement to establish charging stations so that any variation on the number
of established charging stations leads to increase in the network cost. In summary, the
management of time-dependent parameters, battery inventory of type 2 charging stations,
power transaction among the PG and charging stations, and minimum power requirement
to establish charging stations can considerably reduce the overall electricity supply net-
work cost, when the PG utilization is under control.

This study can be further extended in several research directions. Our study ignores

the impact of traffic congestion on the electricity supply network design and cost. One
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possible extension is the inclusion of the impact of EV congestion at charging stations on
a driver charging decision. Apart from this, a more realistic approach can track drivers’
behaviors in relation to the congestion at EV charging stations. A disrupted model along
with backup scenarios of demand satisfaction can be proposed in comparison with a power
disruption prevention model at the high risk aversion level. Furthermore, it is interesting

to consider the stochastic nature of other parameters into the model such as the RES.
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