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This dissertation studies a framework in support electric vehicle (EV) charging sta-

tion expansion and management decisions. In the first part of the dissertation, we present

mathematical model for designing and managing electric vehicle charging stations, consid-

ering both long-term planning decisions and short-term hourly operational decisions (e.g.,

number of batteries charged, discharged through Battery-to-Grid (B2G), stored, Vehicle-

to-Grid (V2G), renewable, grid power usage) over a pre-specified planning horizon and

under stochastic power demand. The model captures the non-linear load congestion effect

that increases exponentially as the electricity consumed by plugged-in EVs approaches the

capacity of the charging station and linearizes it. The study proposes a hybrid decomposi-

tion algorithm that utilizes a Sample Average Approximation and an enhanced Progressive

Hedging algorithm (PHA) inside a Constraint Generation algorithmic framework to effi-

ciently solve the proposed optimization model. A case study based on a road network of

Washington, D.C. is presented to visualize and validate the modeling results. Computa-
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tional experiments demonstrate the effectiveness of the proposed algorithm in solving the

problem in a practical amount of time. Finding of the study include that incorporating the

load congestion factor encourages the opening of large-sized charging stations, increases

the number of stored batteries, and that higher congestion costs call for a decrease in the

opening of new charging stations.

The second part of the dissertation is dedicated to investigate the performance of a

collaborative decision model to optimize electricity flow among commercial buildings,

electric vehicle charging stations, and power grid under power demand uncertainty. A

two-stage stochastic programming model is proposed to incorporate energy sharing and

collaborative decisions among network entities with the aim of overall energy network

cost minimization. We use San Francisco, California as a testing ground to visualize and

validate the modeling results. Computational experiments draw managerial insights into

how different key input parameters (e.g., grid power unavailability, power collaboration re-

striction) affect the overall energy network design and cost. Finally, a novel disruption pre-

vention model is proposed for designing and managing EV charging stations with respect

to both long-term planning and short-term operational decisions, over a pre-determined

planning horizon and under a stochastic power demand. Long-term planning decisions

determine the type, location, and time of established charging stations, while short-term

operational decisions manage power resource utilization. A non-linear term is introduced

into the model to prevent the evolution of excessive temperature on a power line under

stochastic exogenous factors such as outside temperature and air velocity. Since the re-

search problem is NP-hard, a Sample Average Approximation method enhanced with a
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Scenario Decomposition algorithm on the basis of Lagrangian Decomposition scheme is

proposed to obtain a good-quality solution within a reasonable computational time. As a

testing ground, the road network of Washington, D.C. is considered to visualize and val-

idate the modeling results. The results of the analysis provide a number of managerial

insights to help decision makers achieving a more reliable and cost-effective electricity

supply network.

Key words: Charging stations, electric vehicles, Vehicle-to-grid, renewable energy, constraint-
generation algorithm, sample average approximation, scenario decomposition algorithm,
rolling horizon heuristics
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CHAPTER I

INTRODUCTION

1.1 Introduction

As a result of the growing concern over climate change and dependence on fossil fuels,

electric vehicles (EV) have gained considerable attention all over the world in the last few

decades. In it’s continuation, a tremendous EV sales increase is observed on U.S. market

in recent years i.e., approximately, 700% sales increase from 2011 to 2016 [55] where

nearly 82% sales increase only in December, 2016 over the same time period in 2015

[35]. Additionally, with a number of incentive policies proposed by both federal and state

government, it is anticipated that there will be approximately 2.7 million of EVs on the

U.S. road by 2020 [15]. Furthermore, it is expected that EV market share will hit 10%

by 2025 [56]. The large EV penetration will bring both challenges and opportunities for

the power grid (PG). Running these automobiles on electricity instead of gasoline shifts

energy requirements from gas pumps to the power grid. If the charging is unmanaged for

such a large number of EVs, the electricity grid can be affected negatively. To support

large-scale deployment of EVs and achieve efficient grid operation, there is a urgent need

to carefully design and manage electric vehicle charging stations to not only reduce overall

system cost, but also provide substantial environmental and social benefits.

1
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As the penetration of electric vehicle widens, the load on the power system is go-

ing to increase due to the expansion of the charging infrastructure. A recent study from

Washington State’s Department of Transportation reveals that a total of 228,725 kWh of

energy were supplied to charge electric cars between 2012 and 2015, which is equivalent

to displacing 22,397 gallons of gas [125]. Further, projections are made that the load from

electric vehicles in the state of Washington will reach around 107 MW by 2029 [24]. Bai

et al. [9] demonstrate the effect of daily load curve triggered by electric vehicle under

three different charging modes. In another study, Qian et al. [98] show how different

percentages of penetration of electric vehicles can add a significant increase to the power

consumption. From both studies it has been noticed that electric vehicle has direct impact

on the daily load curve. With more EVs in the market, their charging on different time

period of the day can add a large load in the electricity grid. This phenomena is generally

referred to as load congestion to the distributed energy sources which may arise due to var-

ious reasons, e.g., very high power consumption during peak hours, concentrated charging

of EVs, and excessive power generation from distributed energy sources. If the charging

stations are not expanded and managed properly, the resultant load congestion can bring

serious distress to the power grid, including directly damaging many key elements of our

distribution system such as distribution transformers, feeders, and many others. Moreover,

the excessive electricity flow causes line over heating, which in extreme case cause power

transmission line failure. To hedge against this projected growth, it may be required to up-

grade electric distribution systems, increase capacities, integrate other power sources (i.e.,

renewable energy sources, vehicle-to-grid, shared energy from commercial buildings), and

2
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introduce dynamic pricing options (i.e., encourage off-peak charging so that the growing

loads do not exacerbate peak demand).

This dissertation is divided into three sections. The contribution of each section is men-

tioned at the chapter corresponding to each section. In the first section (CHAPTER II), we

present a novel two-stage stochastic mixed-integer program that incorporates both long

term planning decisions and short-term hourly operational decisions to design and manage

electric vehicle charging station decisions under stochastic power demand while preventing

congestion from occurring. We consider a long-term charging station expansion planning

model that features size, location, and timing to open facilities and demand response with a

short-term hourly time resolution. The problem is challenging due to the NP-hard nature of

location design, uncertainties present in dynamic traffic demands, availability in renewable

energy sources, and many other issues which significantly impact hourly power manage-

ment (e.g., renewable, V2G, grid power usage) and battery charging, discharging, and

storage decisions in a charging station. We develop and implement a customized hybrid

decomposition algorithm that combines a Constraint Generation algorithm with a Sam-

ple Average Approximation algorithm and an enhanced Progressive Hedging algorithm.

We introduce a number of algorithmic improvements such as penalty parameter updating

techniques, local and global heuristics, and different variants of the rolling horizon heuris-

tic. We construct a real-world case study based on the road network of Washington, D.C.

to test the performance of the algorithms and reveal interesting managerial insights. The

outcome of this study provides a number of managerial insights on total system cost and

optimal system design such as the optimal expansion of charging stations, number of bat-

3
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teries charged, discharged, stored, vehicle-to-grid, renewable, grid power usage decisions

under different power demand variability levels and congestion prices. Such results can

effectively aid decision makers to investigate the impact of hourly demand management

capabilities of a charging station.

In the second section (CHAPTER III), we proposes a novel collaborative energy shar-

ing decision model to study energy sharing among a cluster of commercial buildings and

EV charging stations in concert with the PG. The research problem is formulated as a two-

stage stochastic mixed-integer linear programming (MILP) model and then solved using

an enhanced Sample Average Approximation (SAA) method. The efficiency of the SAA

method is enhanced by generating some problem specific valid inequalities. We demon-

strate the computational performance of our customized hybrid algorithm relative to its

generic version. We Construct a real-world case study to test the performance of the al-

gorithms and reveal interesting managerial insights. We use San Francisco, California as

a testing ground to visualize and validate the modeling results. The outcome of this study

provides a number of managerial insights, such as the impact of demand variability, grid

power disruption, power collaboration limit, and renewable energy cell sizes on overall

system performance, which can effectively aid decision makers to design a cost-efficient

collaborative system between multiple commercial buildings and EV charging stations.

In the third section (CHAPTER IV) this dissertation we develop and solve a reliable

EV charging station planning and managing problem with explicit consideration of random

power demand. We model the condition of the line temperature due to the excessive flow

of electricity. We develop a novel reliable two-stage stochastic mixed-integer non-linear

4
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programming model that incorporates both long term planning decisions and short-term

hourly operational decisions to design and manage reliable electric vehicle charging sta-

tion decisions under stochastic power demand. We consider a reliable two-stage stochas-

tic program where in the first-stage we determine size, type and timing to open charging

stations based on stochastic demand, and in the second-stage we satisfy the charging sta-

tions demand and track the operations of demand response with a short-term hourly time

resolution. To linearize the model, we employ three linearization techniques based on Mc-

Cormick relaxation techniques (also known as McCormick envelopes). We propose and

implement a customized hybrid decomposition solution approach that combines a Sample

Average Approximation algorithm with an enhanced Scenario Decomposition Algorithm

to solve our proposed optimization model. The enhanced Scenario Decomposition Algo-

rithm incorporate different variants of the rolling horizon heuristic. We apply the proposed

model and algorithm to a realistic scale case study based on the road network of Washing-

ton, D.C. The outcome of this study provides a number of interesting managerial insights

on total system cost and optimal system design. The decision includes optimal reliable

EV charging station expansion, number of batteries charged, discharged, stored, vehicle-

to-grid, RES, grid power usage decision under stochastic power demand. These results can

effectively help decision makers to investigate the impact of hourly demand management

capabilities of a charging station.

5
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CHAPTER II

MANAGING LOAD CONGESTION IN ELECTRIC VEHICLE CHARGING

STATIONS-A MULTI-PERIOD STOCHASTIC MODEL

2.1 Introduction

As a result of the growing concern over climate change and dependence on fossil fuels,

electric vehicles (EV) have gained considerable attention all over the world in the last few

decades. In it’s continuation, we observe a tremendous EV sales increase on U.S. market in

recent years i.e., approximately, 700% sales increase from 2011 to 2016 (shown in Figure

2.1a) [55] where nearly 82% sales increase only in December, 2016 over the same time

period in 2015 (shown in Figure 2.1b) [35]. The increasing trend is motivated by a number

of initiatives that have been taken by the U.S. government, such as the EV Everywhere

Grand Challenge which aims to encourage the manufacture of EVs that are as affordable

and user friendly as internal combustion vehicles by 2022 [115]. Furthermore, recent de-

velopments in battery technologies and the immense on-going research efforts are striving

to alleviate the so called “range anxiety” issue for EV [84]. For instance, after a monumen-

tal advancement in lithium-ion batteries, Audi e-tron quattro is expected to hit the market

in 2018 with a range of more than 310 miles1. With this advancement in battery technolo-

gies and a number of incentive policies proposed by the government, it is expected that

1Available from: http://www.audi.com/en/innovation/quattro/quattro_IAA2015.
html
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there will be approximately 2.7 million EVs on the U.S. road by 2020 [15]. If the charging

is unmanaged for such a large number of EVs, the electricity grid can be affected nega-

tively. Furthermore, the proper design and establishment of charging station infrastructure

over time would improve the future use and support of EVs. These facts mandate an ur-

gent need to efficiently design and manage charging station to promote widespread use of

EVs. To achieve this goal, this study explores the major challenges associated with the es-

tablishment and expansion of an EV charging infrastructure and develops an optimization

framework that can be used by decision makers to better manage charging stations related

activities.
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Figure 2.1: U.S. EV sales by (a) year in between 2011–2016 [55] and (b) year and month

distribution in between 2014–2016 [35]

The transition from internal combustion vehicles to EVs is influenced by several non-

trivial factors. First, EVs have better fuel economy and lower fuel costs compared to

conventional vehicles. For instance, EV fuel costs around 2–3 cents per mile whereas con-
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ventional vehicles fuel costs approximately 13 cents per mile2. Second, the use of EVs

reduces the United States reliance on imported petroleum and eventually increases energy

security. These benefits make EVs an important segment of the U.S. automotive industry,

which as a whole accounts for more than 3% of U.S. GDP [66]. As the number of EVs

on the road increases, the number of charging stations and their capacities will need to be

expanded accordingly. A recent study from Washington States Department of Transporta-

tion reveals that between 2012 and 2015 a total of 228,725 kWh of energy was utilized for

charging electric cars, which is equivalent to displacing 22,397 gallons of gas [125]. In this

study, they determined that these charging stations had been used 25,888 times since they

were first opened in 2012. They anticipate that the EV load in the State of Washington will

reach around 107 MW of electricity energy by 2029 which is an 87% increase from their

current usage [24]. The increased use of EVs also increases electrical grid demand, which

may increase high-level emission from petroleum-based electrical generation instead of re-

ducing it. Due to the scarcity of fossil fuels and the negative consequences of using them,

renewable energy sources are required to be coupled with the power grid as an alterna-

tive clean source of electricity. Additionally, the idea of vehicle-2-grid (V2G) is employed

for reducing higher EVs charging effects to the grid. In V2G mode, the charging station

supplies power to the grid. However, the projected increase of EV usage and integration

of renewable energy sources along with V2G technology for EV charging presents oppor-

tunities as well as challenges. To hedge against this projected growth, power companies

may need to upgrade electric distribution systems, increase capacities, integrate renewable

2Available from: http://www.fueleconomy.gov/feg/findacar.shtml
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energy sources, and introduce dynamic pricing options (i.e., encourage off-peak charging

so that the growing loads do not exacerbate peak demand).

The U.S. Energy Information Administration (EIA) reports that the power demand

varies significantly throughout the day (see Figure 2.2a) [118] where 10:0 A.M. to 8:0

P.M. are considered as peak hours of a regular day. The EIA further reports that replacing

the internal-combustion engine vehicles with EVs will add approximately 1,198 TWh of

electricity demand to the grid [119]. This number represents a nearly 29% increase in an-

nual electricity demand in the United States. Figure 2.2b shows the trend of alternative fuel

stations in the U.S. by fuel type from 1992 to 2016. Although 2016 experienced the largest

growth to support the growing EV population, it is not sufficient to meet the demand for

the projected growth of EVs. With more EVs in the market, their charging on different

time period of the day can add a large load in the electricity grid. This phenomena is gen-

erally referred to as “load congestion” to the distributed energy sources which may arise

due to various reasons, e.g., very high power consumption during peak hours, concentrated

charging of EVs, and excessive power generation from distributed energy sources. If the

charging stations are not expanded and managed properly, the resultant load congestion can

bring serious distress to the power grid, including directly damaging many key elements of

our distribution system such as distribution transformers, feeders, and many others.

Till now majority of the previous studies have focused on identifying the best locations

for refueling stations to maximize traffic flow under deterministic (e.g., [65], [23], [67])

and stochastic settings (e.g., [89], [74], [14], [52]). Further, these studies attempt to extend

the single time period flow-refueling location model (FRLM), introduced by Kuby and Lim

9
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Figure 2.2: U.S. (a) daily power demand curve [118] and (b) alternative fueling station by

fuel type [3]

[65] and later extended by Wang and Lin [124], and MirHassani and Ebrazi [79], to a multi-

period charging station location problem (e.g., Chung and Kwon [23] and Li et al. [67]) to

gradually expand EV charging stations over time. Although these extensions have practical

implications, the authors concentrate on charging station expansion decisions while little or

no attention is given towards short-term charging station operational decisions (e.g., hourly

management decisions). Further, the prior studies ignored the impact of load congestion to

the design and management of charging station expansion decisions.

One possible way to alleviate grid load is to integrate renewable energy with V2G

sources while planning for optimal charging schedules for the EVs. We observe a good

stream of literatures in this research direction. For instance, Zhang et al. [133] and Su

and Chow [110] develop a methodology to manage the charging load for a large number

of EVs. The authors consider the travel pattern of EVs and charging characteristics of

the EV batteries (e.g., initial state-of-charge (SoC), battery charging time) to determine
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an optimal charging schedule for the EVs. Liu et al. [68] introduce the concept of smart

charging patterns of EVs while considering coordination of wind energy, thermal units, and

V2G sources. Along the same line, Gan et al. [37] formulate the EV charging scheduling

problem as an optimal control problem, and propose a decentralized algorithm to solve the

problem. Guo et al. [44] plan for the operations of EV parking decks considering the avail-

ability of renewable energy sources. The authors develop a tool to decide hourly parking

fees and charging prices based upon the forecast values of the available renewable energy.

Later, Fathabadi [33] studies the different effects of incorporating V2G and renewable en-

ergy in a power network. The goal is to identify the best coordination that is effective in

sustaining the system while reducing the cost and loss of power production. Zhang et al.

[134] propose a scheduling model to minimize the mean waiting time for charging the EVs

at the charging stations equipped with multiple plug outlets and availability of renewable

energy sources. Haddadian et al. [46] consider the effects of incorporating V2G and re-

newable energy as viable sources for the smart grid. The authors further developed in [45]

a mixed-integer linear programming (MILP) model to optimize the hourly scheduling of

electricity where several key components of the model are considered as hourly load, en-

ergy, and outages are generated using a Monte-Carlo simulation. Most of existing studies

along this line attempt to manage load congestion for a single facility while little or no

attention is given to its impact on the charging station expansion decisions.

Another stream of research in the literature focuses on the application of battery swap

stations where EVs can exchange their depleted, or nearly depleted, batteries with full

batteries for a fee. Pan et al. [89] develop a two-stage stochastic program that optimally
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locates EV battery swapping stations prior to the realization of battery demands, loads,

and generation capacity of renewable energies. Worley and Klabjan [129] present a dy-

namic programming model that determines the number of batteries to purchase and their

charging time based on dynamic changes in grid power fees. The authors only consider

the transportation system but do not consider V2G or the impact on the power grid. Mak

et al. [74] develop two robust optimization models based on incomplete information (e.g.,

adoption rate of EVs). The first model minimizes costs while the second model maximizes

a pre-specified amount of profit associated with optimizing the infrastructure planning for

battery swap stations. Two important features of the models are their consideration of the

capacity limits at the swapping stations and demand uncertainty. Another study by Zheng

et al. [135] develop a framework for optimal design of battery charging/swap stations in

distribution systems based on life cycle cost (LCC). Liu et al. [70] propose an optimization

model to determine the energy exchange strategies of a battery swap station considering

solar energy availability. The authors extend their prior work in [71] to determine the loca-

tion and capacity of battery swap stations while considering energy demand management

decisions (e.g., optimal pricing, number of batteries to charge and discharge). In another

study, Avci et al. [8] examine switch stations in comparison to charging stations and con-

clude that switch stations encourage the adoption of EVs. Both options have advantages

and disadvantages when compared to one another. Note that most of existing studies along

this line attempt to optimize battery management (e.g., hourly charging, discharging, stor-

ing) decisions within the facility while little or no attention is given to the charging station

expansion decisions.

12



www.manaraa.com

To the best of the authors’ knowledge, none of the prior studies have investigated the

impact of charging station load congestion from a random power demand viewpoint and

integrated both the long-term charging station planning decisions (e.g., size, location, and

year to open charging stations) and short-term hourly operational decisions (e.g., num-

ber of batteries charged, discharged, stored, use of vehicle-to-grid (V2G), renewable, grid

power usage) under the same decision making framework. Separate considerations of these

factors, as observed in the prior studies, may result in sub-optimal decisions or inaccu-

rate cost estimation. The integration of these factors is motivated by the real cases for

which a holistic network design might help developing policies and insights for the po-

tential grow of EVs in the market. To fill this gap in the literature, we have developed

a two-stage stochastic mixed-integer non-linear programming model that simultaneously

optimizes long-term planning decisions and short-term charging station management de-

cisions over a pre-specified planning horizon and under stochastic power demand while

preventing congestion from occurring. The problem is challenging due to the NP-hard

nature of location design, uncertainties present in dynamic traffic demands, availability in

renewable energy sources, and many other issues which significantly impact hourly power

management (e.g., renewable, V2G, grid power usage) and battery charging, discharging,

and storage decisions in a charging station. To solve this challenging problem, we propose

a highly customized hybrid decomposition algorithm that combines a Constraint Gener-

ation algorithm with a Sample Average Approximation algorithm and an enhanced Pro-

gressive Hedging algorithm. The enhanced Progressive Hedging algorithm incorporates

several algorithmic improvements such as variable fixing techniques, penalty parameter
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updating techniques, local and global heuristics, and different variants of the rolling hori-

zon heuristic. It has been verified through multiple experiments that the customized hybrid

decomposition algorithm is capable of generating high-quality solutions to large-size prob-

lem instances of our model, within a reasonable amount of time.

Besides proposing the general model, another important contribution of this paper is

applying this model to a real-world case study based on the road network of Washington,

D.C. The outcome of this study provides a number of managerial insights on total sys-

tem cost and optimal system design such as the optimal expansion of charging stations,

number of batteries charged, discharged, stored, vehicle-to-grid, renewable, grid power us-

age decisions under different power demand variability levels and congestion prices. Such

results can effectively aid decision makers to investigate the impact of hourly demand man-

agement capabilities of a charging station. Finally, we show how the average unit power

charging requirement of a car and the average unit power discharged from a car impact

system performance.

The remainder of this paper is organized as follows. Section 2.2 presents the two-stage

stochastic programming model formulation for optimal sizing and location of charging

stations considering power demand uncertainty. The hybrid solution approach to solve

our proposed optimization model is introduced in Section 2.3. Section 2.4 presents a se-

ries of numerical experiments to draw managerial insights and verify the algorithmic per-

formances. Lastly, Section 2.5 provides conclusions along with briefly discusses future

research directions.
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2.2 Problem Description and Model Formulation

This section presents a two-stage stochastic mixed-integer nonlinear programming

(MINLP) model that simultaneously addresses long-term electric vehicle charging station

expansion decisions (e.g., sizing, location, and timing decisions) and short-term hourly op-

erational decisions (e.g., number of batteries charged, discharged, stored, V2G, renewable,

grid power usage) over a pre-specified planning horizon and under power demand uncer-

tainty. Further, the model contains a nonlinear congestion cost function which arises due

to overloading the power system of a charging station during the peak charging hours. We

then present a modified formulation that linearizes the nonlinear congestion cost function

and allow us to solve the proposed optimization model in a reasonable amount of time.

2.2.1 Nonlinar Model Formulation

The problem under investigation divides a transportation network into a set of cells

I = {1, 2, ..., I} where each cell can be considered as a candidate location to open a

charging station. These charging stations can be constructed over a set of time periods

T = {1, 2, ..., T} which is expressed in years. Locating a charging station of capacity

l ∈ L at cell i ∈ I in year t ∈ T entails a fixed opening cost Ψlit. We assume that a

budget Bt is available each year t ∈ T to open the stations. Let H = {1, 2, ..., H} be the

set of hours, and we assume that the number of time-stages are predetermined with equal

length (for both hours and years). Let fiht be the expected number of cars that will flow

into each cell i ∈ I in hour h ∈ H of year t ∈ T . However, there is uncertainty about

what percentage of the cars require charging. Let ηωht be the percentage of cars charging in
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hour h ∈ H of year t ∈ T under scenario ω ∈ Ω where Ω represents the set of scenarios of

different realization of electric vehicles and ρω is a probability of a particular realization.

We further denote λciht as the average charge required by an EV in cell i ∈ I at hour h ∈ H

of year t ∈ T (in kWh). Therefore, the realized power demand for each cell i ∈ I at hour

h ∈ H of year t ∈ T can be represented by λcihtη
ω
htfiht.

This model assumes that the electric power consumed in a charging station is provided

by one or more of the three energy sources: (i) conventional power generators (CPGs)

generally located at power stations, (ii) solar power sources at the charging stations, and

(iii) the discharge of EVs into the grid using V2G connection capability. A two-way

connection between the power grid and a station is used in the model, i.e., one for power

flow from the grid to the stations during the charging process and another for the flow from

the stations to the grid during the EV discharging process. Figure 4.1 presents the structure

of the power network consisting of one charging station, one power grid, one renewable

resource, and one electric car battery. During the EV charging process, a cost results from

the charging stations having to buy energy from power grids. However, during an EV’s

discharging process they can sell power to the grid generating income for the station. We

define parameters cpght , c
r
ht, and cv2ght to be the cost per kWh for charging EVs to use the grid,

solar, and V2G power in hour h ∈ H of year t ∈ T , respectively. We further define cdht as

the profit per kWh for discharging batteries in hour h ∈ H of year t ∈ T .

Let qinlht and qoutlht denote the number of plug-ins of capacity l ∈ L available at a station

for charging and discharging EVs in hour h ∈ H of year t ∈ T , respectively. We assume

a minimum of ecslht power demand is required to open a charging station while a station
16
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Figure 2.3: Network representation of an electric vehicle charging station with various

alternative power sources

of size l ∈ L cannot handle more than ccaplht (in kWh) of power demand in a given hour

h ∈ H of year t ∈ T . The maximum and minimum power grid electricity availability

is denoted by p+liht and p−liht, for each capacity l ∈ L in cell i ∈ I at hour h ∈ H of

year t ∈ T , respectively. We further define rilht to be the solar power availability of a

charging station located in cell i ∈ I of capacity l ∈ L at hour h ∈ H of year t ∈ T .

Apart from grid and renewable sources, charging stations can also obtain power from V2G

sources. We approximate this availability by λdihtκhtfiht where it is assumed that κht is

the percentage of fiht vehicles that will discharge power to each charging station located

in cell i ∈ I of capacity l ∈ L at hour h ∈ H of year t ∈ T and λdiht be the average

unit power discharged from an electric vehicle (in kWh). This formulation assumes that

if the available energy generation is not sufficient to meet the EVs load demand, then

electricity can be imported from other distribution companies for the unmet demand by

paying a unit penalty cost, cuht, per kWh in hour h ∈ H of year t ∈ T . Let ϑc and ϑd

denote the charging and discharging efficiency and bcap be the rated capacity of an electric

17
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car battery. The state of charge (SoC3) of each vehicle when it is plugged in for charging

and the depth of discharge (DoD4) of each vehicle when it is plugged in for discharging,

are variables. Therefore, electric vehicles coming to the charging stations, whether for

charging or discharging, will have different levels of electricity requirements. For each

cell i ∈ I in hour h ∈ H of year t ∈ T , we assume c+iht, c
−
iht to be the maximum and

minimum SoC of the batteries, and similarly, d+iht and d−iht represent the maximum and

minimum DoD of the batteries, respectively. Note that λciht and λdiht denote the unit power

charge requirement and discharge capability for each car in hour h ∈ H of year t ∈ T ,

respectively, which can be obtained as: λciht = bcap(c+iht− c
−
iht) and λdiht = bcap(d+iht− d

−
iht).

Finally, we assume that the charging station has an inventory holding cost for batteries,

which is denoted as γsht, and the maximum number of batteries that can be stored at hour

h ∈ H of year t ∈ T is uliht. The following additional assumptions made to simplify our

modeling approach are:

Assumption 1 There is an increasing trend in electric car traffic volume over time. This

assumption is consistent with the assumption made by Chung and Kwon [23].

Assumption 2 Every charging station that is opened will also have solar energy as an

available resource.

Assumption 3 Both grid and solar power are available throughout the entire planning

horizon without interruptions; i.e., no disruption will occur during the time horizon that

causes power failure.
3SoC is the ratio of available energy to maximum storable energy in battery
4DoD is used to explain how deeply a battery discharged in electric grid
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Assumption 4 All charging stations will be fast charging DC chargers with battery swap-

ping capability. This assumption is made to ensure the ability to meet the demand.

Assumption 5 All charging stations will be open 24 hours a day, 7 days a week.

Assumption 6 Charging stations will have V2G technology to encourage electric vehicle

owner to sell back power to the grid.

Assumption 7 The proposed model assumes an identical type battery that has a specified

rated capacity can be recharged or swapped at any charging stations.

Let us now introduce the following notation for our two-stage stochastic programming

model formulation:

Sets:

• I: set of cells

• T : set of years

• H: set of representing hours in a year

• L: set of capacities for charging stations

• Ω: set of scenarios

Parameters:

• Ψlit: annual cost of constructing a charging station of capacity l ∈ L at cell i ∈ I in

year t ∈ T

• Bt: budget available for opening charging stations in year t ∈ T
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• fiht: flow of electric vehicles in cell i ∈ I at hour h ∈ H of year t ∈ T

• λciht: average charging required of a car in cell i ∈ I at hour h ∈ H of year t ∈ T

(in kWh)

• λdiht: average power discharged from a car in cell i ∈ I at hour h ∈ H of year t ∈ T

(in kWh)

• ηωht: percentage of cars charging in hour h ∈ H of year t ∈ T under scenario ω ∈ Ω

• κht: percentage of cars discharging in hour h ∈ H of year t ∈ T

• cpght : unit power grid electricity cost consumed by electric vehicles in hour h ∈ H of

year t ∈ T ($/kWh)

• crht: unit cost of producing electric power from renewable energy sources in hour

h ∈ H of year t ∈ T ($/kWh)

• cv2ght : unit V2G electric energy cost in hour h ∈ H of year t ∈ T ($/kWh)

• rliht: availability of renewable energy at a charging station located in cell i ∈ I of

capacity l ∈ L at hour h ∈ H of year t ∈ T

• p+liht/p
−
liht: grid power availability (maximum/minimum) at a charging station located

in cell i ∈ I of capacity l ∈ L at hour h ∈ H of year t ∈ T

• cuht: unit penalty cost for a power shortage in hour h ∈ H of year t ∈ T ($/kWh)

• ecslht: minimum power demand required to open a charging station of capacity l ∈ L

in hour h ∈ H of year t ∈ T

• ccaplht : charging station capacity of size l ∈ L in hour h ∈ H of year t ∈ T (in kWh)

• γsht: unit cost of storing a battery in hour h ∈ H of year t ∈ T

• cdht: unit profit of discharging a battery in hour h ∈ H of year t ∈ T ($/kWh)
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• qinlht: number of plug-ins available for charging batteries at a charging station of

capacity l ∈ L in hour h ∈ H of year t ∈ T

• qoutlht : number of plug-ins available for discharging batteries at a charging station of

capacity l ∈ L in hour h ∈ H of year t ∈ T

• uliht: maximum number of batteries that can be stored at a charging station located

in cell i ∈ I of capacity l ∈ L in hour h ∈ H of year t ∈ T

• bcap: rated capacity of a battery

• ϑc: charging efficiency of an EV

• ϑd: discharging efficiency of an EV

• c+iht/c
−
iht: state of charge of the batteries (maximum/minimum) at cell i ∈ I in hour

h ∈ H of year t ∈ T

• d+iht/d
−
iht: depth of discharge of the batteries (maximum/minimum) at cell i ∈ I in

hour h ∈ H of year t ∈ T

• χc
ht: congestion cost in hour h ∈ H of year t ∈ T

• ρω: probability of scenario ω ∈ Ω

Decision variables:

• Ylit: 1 if a charging station of capacity l ∈ L is opened in cell i ∈ I of year t ∈ T ; 0

otherwise

• Gω
iht: amount of grid power used to satisfy demand at cell i ∈ I in hour h ∈ H of

year t ∈ T under scenario ω ∈ Ω

• Zω
iht: amount of renewable energy used to satisfy demand at cell i ∈ I in hour h ∈ H

of year t ∈ T under scenario ω ∈ Ω

21



www.manaraa.com

• V ω
iht: amount of V2G power used to satisfy demand at cell i ∈ I in hour h ∈ H of

year t ∈ T under scenario ω ∈ Ω

• Uω
iht: amount of power shortage at cell i ∈ I in hour h ∈ H of year t ∈ T under

scenario ω ∈ Ω

• Bω
iht: number of batteries in demand at cell i ∈ I in hour h ∈ H of year t ∈ T under

scenario ω ∈ Ω

• Hω
iht: number of full batteries stored at cell i ∈ I in hour h ∈ H of year t ∈ T under

scenario ω ∈ Ω

• Sω
iht: number of batteries charging at cell i ∈ I in hour h ∈ H of year t ∈ T under

scenario ω ∈ Ω

• P ω
iht: number of batteries discharging at cell i ∈ I in hour h ∈ H of year t ∈ T

under scenario ω ∈ Ω

• W ω
iht: dummy variable for calculating total amount of power used to satisfy demand

at cell i ∈ I in hour h ∈ H of year t ∈ T under scenario ω ∈ Ω

We now introduce the following first and second-stage decision variables for our two-

stage stochastic programming model formulation. The first-stage decision variables Y :=

{Ylit}l∈L,i∈I,t∈T select the size, location, and time to open a charging station, i.e.,

Ylit =


1 if a charging station of capacity l ∈ L is opened at cell i ∈ I in year t ∈ T

0 otherwise;

The second-stage decision variables are: G := {Gω
iht}i∈I,h∈H,t∈T ,ω∈Ω denotes the

amount of grid power used to satisfy demand at cell i ∈ I in hour h ∈ H of year t ∈ T
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under scenario ω ∈ Ω; Z := {Zω
iht}i∈I,h∈H,t∈T ,ω∈Ω denotes the amount of solar power used

to satisfy demand at cell i ∈ I in hour h ∈ H of year t ∈ T under scenario ω ∈ Ω;

V := {V ω
iht}i∈I,h∈H,t∈T ,ω∈Ω denotes the amount of V2G power used to satisfy demand at

cell i ∈ I in hour h ∈ H of year t ∈ T under scenario ω ∈ Ω; B := {Bω
iht}i∈I,h∈H,t∈T ,ω∈Ω

denotes the number of batteries in demand at cell i ∈ I in hour h ∈ H of year t ∈ T under

scenario ω ∈ Ω; H := {Hω
iht}i∈I,h∈H,t∈T ,ω∈Ω denotes the number of full batteries available

at cell i ∈ I in hour h ∈ H of year t ∈ T under scenario ω ∈ Ω; S := {Sω
iht}i∈I,h∈H,t∈T ,ω∈Ω

denotes the number of batteries charging at cell i ∈ I in hour h ∈ H of year t ∈ T under

scenario ω ∈ Ω; P := {P ω
iht}i∈I,h∈H,t∈T ,ω∈Ω denotes the number of batteries discharg-

ing at cell i ∈ I in hour h ∈ H of year t ∈ T under scenario ω ∈ Ω; W := {W ω
iht}

denotes a dummy variable for calculating the total amount of power used to satisfy de-

mand at cell i ∈ I in hour h ∈ H of year t ∈ T under scenario ω ∈ Ω; and finally

U := {Uω
iht}i∈I,h∈H,t∈T ,ω∈Ω denotes the level of power shortage at cell i ∈ I in hour

h ∈ H of year t ∈ T under scenario ω ∈ Ω.

With the increase in adoption of EVs in the market, the electricity grid may more likely

to be getting congested due to the large load imposed by EVs during the peak charging

hours. If the load congestion caused by the EVs are not managed properly, the electricity

grid can be seriously impacted due the consequences of such event, examples include but

not limited to the direct failure of distribution transformers, feeders, and many others. We

assume that when all the available plug-ins (both charging and discharging plug-ins) are

occupied by the EVs during a peak operating hour, the power requirement of the EVs,W ω
iht,

approaches the capacity ccaplht of the charging station i ∈ I. Under steady-state conditions,
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the system-wide average load, considering only the charging station facilities, can be rep-

resented as:
∑

i∈I
∑

h∈H
∑

t∈T

(
Wω

iht∑
l∈L ccaplht Ylit−Wω

iht

)
. For a charging station i ∈ I, when

concentrated charging occurs in the EVs on a specified hour h ∈ H of a given year t ∈ T ,

the ratio of this equation grows exponentially. Hence, the impact of load congestion can be

realistically addressed by the model. Let χc
ht be the load congestion price charged by the

charging station at hour h ∈ H of year t ∈ T . The system-wide load congestion cost now

becomes:
∑

i∈I
∑

h∈H
∑

t∈T χ
c
ht

(
Wω

iht∑
l∈L ccaplht Ylit−Wω

iht

)
. Taking this factor into considera-

tion, the following two-stage stochastic Mixed-Integer Nonlinear Programming (MINLP)

model, referred to as [NEV], can be formulated as follows:

[NEV] Minimize
Y

∑
l∈L

∑
i∈I

∑
t∈T

ΨlitYlit +
∑
ω∈Ω

ρωQ(Y, ω) (2.1)

subject to

∑
l∈L

Ylit ≤ 1 ∀i ∈ I, t ∈ T (2.2)

Ylit−1 ≤ Ylit ∀l ∈ L, i ∈ I, t ∈ T (2.3)∑
l∈L

∑
i∈I

ΨlitYlit ≤ Bt ∀t ∈ T (2.4)

Ylit ∈ {0, 1} ∀l ∈ L, i ∈ I, t ∈ T (2.5)

with Q(Y, ω) being the solution of the following second-stage problem:

Q(Y, ω) = Minimize
G,Z,B,U,V,W,H,P,S

∑
i∈I

∑
h∈H

∑
t∈T

{(cpght
ϑc

)
Gω

iht +
(crht
ϑc

)
Zω

iht +
(cpghtλciht

ϑc

)
Bω

iht+

(cv2ght

ϑc

)
V ω
iht +

(cuht
ϑc

)
Uω
iht + γshtH

ω
iht + χc

ht

( W ω
iht∑

l∈L c
cap
lht Ylit −W ω

iht

)
−
(cdhtλdiht

ϑd

)
P ω
iht

}
(2.6)
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subject to

Gω
iht + Zω

iht + V ω
iht + λcihtB

ω
iht = W ω

iht ∀i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω (2.7)

W ω
iht ≥

∑
l∈L

ecslhtYlit ∀i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω (2.8)

λcihtη
ω
htfiht −W ω

iht = Uω
iht ∀i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω (2.9)

Hω
iht ≤

∑
l∈L

ulihtYlit ∀i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω (2.10)

Hω
iht −Bω

iht − P ω
iht + Sω

iht = Hω
i,h+1,t ∀i ∈ I, h ∈ H\|H|, t ∈ T , ω ∈ Ω (2.11)

Hω
i|H|t −Bω

i|H|t − P ω
i|H|t + Sω

i|H|t = Hω
i,1,t+1 ∀i ∈ I, t ∈ T \|T |, ω ∈ Ω (2.12)

Sω
i,1,1 = 0 ∀i ∈ I, ω ∈ Ω (2.13)

Sω
i,h+1,t = Bω

iht + P ω
iht ∀i ∈ I, h ∈ H\|H|, t ∈ T , ω ∈ Ω

Sω
i,1,t+1 = Bω

i|H|t + P ω
i|H|t ∀i ∈ I, t ∈ T \|T |, ω ∈ Ω (2.14)

Sω
iht ≤

∑
l∈L

qinlhtYlit ∀i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω (2.15)

P ω
iht ≤

∑
l∈L

qoutlht Ylit ∀i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω (2.16)

W ω
iht ≤

∑
l∈L

ccaplht Ylit ∀i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω (2.17)∑
l∈L

p−lihtYlit ≤ Gω
iht ≤

∑
l∈L

p+lihtYlit ∀i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω (2.18)

V ω
iht ≤

∑
l∈L

λdihtκhtfihtYlit ∀i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω

Zω
iht ≤

∑
l∈L

rlihtYlit ∀i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω (2.19)

Hω
iht, B

ω
iht, S

ω
iht, P

ω
iht ∈ Z+ ∀i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω (2.20)

Gω
iht, Z

ω
iht, V

ω
iht, U

ω
iht ≥ 0 ∀i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω (2.21)

The objective function (2.1) is the sum of the first-stage costs and the expected second-

stage costs over all scenarios. The first-stage decisions minimize the charging station open-
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ing costs. Constraints (2.2) ensure that at most one charging station of capacity l ∈ L is

opened in a given cell i ∈ I in year t ∈ T . Constraints (2.3) indicate that if a station

is opened in an earlier time period, it will remain open in the subsequent time periods.

Constraints (2.4) restrict the number of charging stations that can be opened in a given

year t ∈ T with a pre-specified budget. Constraints (2.5) set the binary restrictions for the

first-stage decision variables.

The objective function (2.6) minimizes the expected value of the second-stage costs.

More specifically, the first four terms in (2.6) represent the cost of charging stations due

to using grid, renewable, battery, and V2G power sources, respectively. The fifth term

represents the expected penalty costs in case of electricity shortage. The next two terms

represent the cost associated with not satisfying the electricity demand and storing of bat-

teries in the charging stations. The last two terms of the objective function represent the

expected load congestion cost and profit gained due to discharging batteries in the charging

stations. Constraints (2.7) calculate the total amount of electricity used (via grid, renew-

able, battery, and V2G) in a given cell i ∈ I at hour h ∈ H of year t ∈ T under scenario

ω ∈ Ω. Constraints (2.8) ensure that opening a charging station at a given cell i ∈ I

mandates a minimum power availability. Constraints (2.9) indicate that the power demand

(λcihtη
ω
htfiht) for each cell i ∈ I must be satisfied either through the power grid, renew-

able resources, V2G, swapping batteries, or through the purchase of electricity from other

power distribution companies. Constraints (2.10) restrict the number of batteries that can

be stored in a charging station. Constraints (2.11) and (2.12) decide the hourly storing,

charging, and discharging battery decisions for a charging station located in cell i ∈ I of
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a given year t ∈ T under scenario ω ∈ Ω. Constraints (2.13) indicate that the first hour

of the planning horizon starts with no charged batteries. Constraints (2.14) indicate that

battery charging decisions made on hour (h + 1) is dependent on the number of batteries

being charged and discharged in hour h. Constraints (2.14) ensure that the number of bat-

teries that should be charged in the first hour of year (t + 1) is dependent on the number

of batteries being charged and discharged in the last hour of year t. Constraints (2.15) and

(2.16) indicate that the number of batteries charged or discharged should be limited by the

number of plug-ins available at the charging stations. Constraints (2.17) indicate that the

amount of power used (via grid, renewable, battery, and V2G) at a charging station located

in cell i ∈ I at hour h ∈ H of year t ∈ T is limited by the capacity (ccaplht ) of the station. To

ensure power stability, grid power usage at a charging station located in cell i ∈ I at hour

h ∈ H of year t ∈ T under scenario ω ∈ Ω should fall between a minimum (p−ilht) and

maximum (p+ilht) limit. This is ensured via constraints (2.18). Constraints (2.19) indicate

that the availability of V2G power in a given cell i ∈ I is limited by the electric vehicles

willing to discharge at hour h ∈ H of year t ∈ T under scenario ω ∈ Ω. Constraints (2.19)

limit the usage of renewable power in a given cell i ∈ I at hour h ∈ H of year t ∈ T under

scenario ω ∈ Ω to its availability (rliht). Constraints (2.20) and (2.21) are the standard

integrality and non-negativity constraints, respectively.

2.2.2 Model Linearization

Model [NEV] is nonlinear due to the presence of a nonlinear congestion cost function

in the objective function. This cost grows exponentially as the load of a charging station
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approaches its capacity. To linearize this term, we adopt an approach proposed by Elhedhli

and Wu [30]. Let us now introduce a new decision variable F := {F ω
iht}i∈I,h∈H,t∈T ,ω∈Ω

which can be defined as follows:

F ω
iht =

W ω
iht∑

l∈L c
cap
lht Ylit −W ω

iht

(2.22)

where equation (2.22) can be further reduced as follows:

W ω
iht =

(
F ω
iht

1 + F ω
iht

)∑
l∈L

ccaplht Ylit =
∑
l∈L

ccaplht

(
F ω
iht

1 + F ω
iht

)
Ylit ∀i ∈ I, (2.23)

h ∈ H, t ∈ T , ω ∈ Ω

Let us introduce another continuous variable X := {Xω
liht}l∈L,i∈I,h∈H,t∈T ,ω∈Ω which is

defined as follows:

Xω
liht =

(
F ω
iht

1 + F ω
iht

)
Ylit ∀l ∈ L, i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω (2.24)

when {Ylit}l∈L,i∈I,t∈T = 1, the above equation reduces to the following:

∑
l∈L

Xω
liht =

F ω
iht

1 + F ω
iht

∀i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω (2.25)

It is interesting to note that for the case when {Ylit}l∈L,i∈I,t∈T = 0, constraints (2.24)

force {Xω
liht}l∈L,i∈I,h∈H,t∈T ,ω∈Ω = 0. This condition is enforced via introducing the fol-

lowing additional constraints in the model formulation:
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0 ≤ Xω
liht ≤ Ylit ∀l ∈ L, i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω (2.26)

Lemma 1 The function defined by Xω
liht(F

ω
iht) =

Fω
iht

1+Fω
iht

is a concave function in F ω
iht ∈

(0,∞).

Proof: The first derivative w.r.t. F ω
iht is δ

δFω
iht
(Xω

liht) = 1/(1+F ω
iht)

2 > 0. Again, taking the

second derivative of the previous function provides: δ2

δFω
iht2

(Xω
liht) = −2/(1 + F ω

iht)
3 < 0.

The positive value in the first derivative and negative value in the second derivative proves

that the function Xω
liht(F

ω
iht) is concave in F ω

iht.

Lemma 1 implies that the concave functionXω
liht(F

ω
iht) can be accurately approximated

by adding the following set of tangent cutting planes [30]:

F ω
iht

1 + F ω
iht

=Minm∈M

[
F ω
iht(

1 + F ω,m
iht

)2 +

(
F ω,m
iht

1 + F ω,m
iht

)2]
(2.27)

which can be represented by:

F ω
iht

1 + F ω
iht

≤ F ω
iht(

1 + F ω,m
iht

)2 +

(
F ω,m
iht

1 + F ω,m
iht

)2

∀i ∈ I, h ∈ H, t ∈ T ,m ∈M, ω ∈ Ω (2.28)

where {F ω,m
iht }i∈I,h∈H,t∈T ,ω∈Ω,m∈M indicate the set of points to approximate equation

(2.26). Since the value of {Ylit}l∈L,i∈I,t∈T is finite; the value that {F ω
iht}i∈I,h∈H,t∈T ,ω∈Ω

provides is also finite. This implies that the setM should be finite. Then, equation (2.29)

can be derived from (2.25) and (2.28) as following:

29



www.manaraa.com

∑
l∈L

Xω
liht ≤

F ω
iht(

1 + F ω,m
iht

)2 +

(
F ω,m
iht

1 + F ω,m
iht

)2

∀i ∈ I, h ∈ H, t ∈ T ,m ∈M, ω ∈ Ω(2.29)

The approximated linearized objective function of [NEV], referred to as [LEV], is as

follows:

[LEV] Minimize
Y,G,Z,B,U,V,W,H,P,S,X,F

∑
i∈I

∑
t∈T

(∑
l∈L

ΨlitYlit +
∑
h∈H

∑
ω∈Ω

ρω

{(cpght
ϑc

)
Gω

iht+

(crht
ϑc

)
Zω

iht +
(cpghtλciht

ϑc

)
Bω

iht +
(cv2ght

ϑc

)
V ω
iht +

(cuht
ϑc

)
Uω
iht+

γshtH
ω
iht + χc

htF
ω
iht −

(cdhtλdiht
ϑd

)
P ω
iht

})
(2.30)

subject to (2.2)-(2.5), (2.7)-(2.16), (2.18)-(2.20), and

W ω
iht ≤

∑
l∈L

ccaplhtX
ω
liht ∀i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω (2.31)

∑
l∈L

Xω
liht ≤

F ω
iht(

1 + F ω,m
iht

)2 +

(
F ω,m
iht

1 + F ω
iht

)2

∀i ∈ I, h ∈ H, t ∈ T ,m ∈M, (2.32)

ω ∈ Ω

Xω
liht ≤ Ylit ∀l ∈ L, i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω (2.33)

Xω
liht, F

ω
iht ≥ 0 ∀l ∈ L, i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω (2.34)

2.3 Solution Approach

In this section, the solution techniques used to solve model [LEV] are discussed. For

a single scenario (|Ω| = 1), single year (|T | = 1), and single hour (|H| = 1) case, we

can show that model [LEV] is actually a special case of a capacitated facility location

problem which is known to be an NP-hard problem [73]. Therefore, commercial solvers,
30



www.manaraa.com

such as CPLEX/GUROBI, fail to solve large-scale instances of this problem. To overcome

this computational burden, a hybrid sampling based decomposition algorithm is proposed.

The hybrid algorithm nests a sample average approximation algorithm and an enhanced

progressive hedging algorithm within a constraint generation algorithmic framework. The

aim is to generate a high quality feasible solution for the [LEV] problem in a timely fash-

ion.

2.3.1 Constraint Generation Algorithm

In (2.33), model [LEV] generates a large number of constraints. This will pose a seri-

ous challenge in solving model [LEV] efficiently by taking into account all the constraints

at once. To remedy this problem, a constraint generation ([CG]) algorithm is developed

that can efficiently and effectively solve model [LEV] despite generating a large number

of constraints through (2.33) at once. A few recent studies, such as [128], [95], and [121],

support that [CG] is capable of solving similar problems efficiently. The algorithm pro-

ceeds by solving a series of MILP programs with a subset of the constraints obtained from

(2.33) and added thereafter as needed. The algorithm terminates when it finds a solution

for the sub-problem which does not violate any constraints within some accepted tolerance

in the full problem [NEV]. Otherwise, a new set of points i.e., a new set of constraints/cuts,

are generated and added to the original model [LEV] in the next iteration. The details of

the algorithm are discussed below:

Let us define UBq and LBq as an upper and lower bound of the original problem at

iteration q. We further define v[LEV] as the solution of the objective function value of
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[LEV] with

(Yq,Gq,Zq,Bq,Vq,Uq,Wq,Hq,Pq,Sq) as its optimal solution. Proposition 1 provides the

lower bound of the [CG] algorithm.

Proposition 1 Equation (2.35) provides the lower bound of the optimal objective function

value of [NEV] for any given subset of points {F ω,m
iht }Mq⊂M.

LB =v[LEV](Mq) =
∑
i∈I

∑
t∈T

(∑
l∈L

ΨlitYlit +
∑
h∈H

∑
ω∈Ω

ρω

{(cpght
ϑc

)
Gω

iht+

(crht
ϑc

)
Zω

iht +
(cpghtλciht

ϑc

)
Bω

iht +
(cv2ght

ϑc

)
V ω
iht +

(cuht
ϑc

)
Uω
iht + γshtH

ω
iht + χc

htF
ω
iht−(cdhtλdiht

ϑd

)
P ω
iht

})
(2.35)

Proof: [LEV](Mq) is the relaxed version of problem [LEV]. Therefore, the optimal objec-

tive function value v[LEV](Mq) obtained from equation (2.35) provides the lower bound

to the optimal objective value of [LEV]. Let v[LEV] and v[NEV] be the optimal objective

function values obtained from [LEV] and [NEV], respectively. Thus, it can be stated that

v[LEV](Mq)≤ v[LEV]. Again, problem [LEV] is an approximation for problem [NEV];

therefore, the solution v[LEV](Mq) will also provide a valid lower bound for the optimal

objective function value of [NEV]. Finally, it can be stated that v[LEV](Mq) ≤ v[LEV]

≤ v[NEV].

The algorithm starts with a subsetMq ⊂ M of the cuts whereM1 can be empty or

chosen a priori while the rest are generated as needed. The subset of points {F ω,m
iht }Mq⊂M

are required to obtain the initial subset of cuts and are used to approximate function

Xω
liht(F

ω
iht). The resulting set is then used to obtain v[LEV](Mq) which provides a valid
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lower bound for the original [NEV] problem (as shown in Proposition 1). This solution is

then used to obtain an upper bound for the [CG] algorithm, as illustrated in the following

proposition.

Proposition 2 Equation (2.36) provides an upper bound of the optimal objective function

value of [NEV] for any given subset of points {F ω,m
iht }Mq⊂M.

UB =
∑
i∈I

∑
t∈T

(∑
l∈L

ΨlitYlit +
∑
h∈H

∑
ω∈Ω

ρω

{(cpght
ϑc

)
Gω

iht +
(crht
ϑc

)
Zω

iht+

(cpghtλciht
ϑc

)
Bω

iht +
(cv2ght

ϑc

)
V ω
iht +

(cuht
ϑc

)
Uω
iht + γshtH

ω
iht+

χc
ht

( W ω
iht∑

l∈L c
cap
lht Ylit −W ω

iht

)
−
(cdhtλdiht

ϑd

)
P ω
iht

})
(2.36)

Proof: All the feasible solutions of [LEV](Mq) also provide a feasible solution to [NEV]

since all the constraints of [NEV] are contained in [LEV](Mq). Therefore, the objective

function value of [NEV] evaluated at (Yq,Gq,Zq,Bq,Vq,Uq,Wq,Hq,Pq,Sq), as shown in

equation (2.36), provides an upper bound for the optimal objective value of [NEV].

The algorithm continues until the gap between the lower and upper bound falls below a

tolerance level ϵ; otherwise, a new set of points {F ω,mnew

iht } are generated using the current

solution (shown below) and the process continues.

F ω,mnew

iht =
W ω,q

iht∑
l∈L c

cap
lht Y

q
lit −W

ω,q
iht

(2.37)

A pseudo-code of the [CG] algorithm is provided in Algorithm 1.
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Algorithm 1: Constraint Generation Algorithm
Initialize: q ← 1, ϵ, UBq ← +∞, LBq ← −∞
terminate← false
Selecting an initial set of points: {F ω,m

iht }Mq⊂M
while (terminate = false) do

Solve [LEV](Mq) to obtain v[LEV](Mq) and (Yq,Gq,Zq,Bq,Vq,Uq,Wq,
Hq,Pq,Sq)
Update the lower bound: LBq ← v[LEV](Mq) using (2.35)
Update the upper bound UBq using (2.36)
if ((UBq − LBq)/UBq ≤ ϵ) then

terminate← true
else

F ω,mnew

iht =
Wω,q

iht∑
l∈L ccaplht Y

q
lit−Wω,q

iht

F ω,h,q+1
iht = F ω,h,q

iht ∪ {F ω,mnew

iht }
end if
q ← q + 1

end while

2.3.2 Sample Average Approximation

Solving model [LEV](Mq) and obtaining a valid lower bound using [CG] algorithm

is still considered challenging. The actual percentage of electric vehicles ηωht that require

charging in a charging station located at cell i ∈ I in hour h ∈ H of year t ∈ T varies

significantly from one hour to the next within a given year. Therefore, it mandates evaluat-

ing a large scenario set to provide meaningful insights for the decision makers. However,

evaluating such a large scenario set increases the size of the problem and thus poses a sig-

nificant computational challenge in solving model [LEV] in a reasonable amount of time.

To remedy this computational burden, a sampling technique, commonly known as the Sam-

ple Average Approximation (SAA) method, is employed. SAA is used extensively to solve

large scale network flow-related problems, such as [120], [101], [105], [106], and many

others. Interested readers may refer to the work by Kleywegt et al. [62] for the proof of
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convergence properties of SAA, and Norkin et al. [85] and Mark et al. [75] for the evalua-

tion of statistical performance of SAA (e.g., validation and error analysis, stopping rules).

In SAA, a sample set {ω1, ω2,....., ωN} ofN scenarios are generated from Ω according to a

probability distribution P and they are solved repeatedly until a pre-specified tolerance gap

is achieved. The lower bound of the [CG] algorithm, defined by equation (2.35) subject to

constraints (2.2)-(2.5), (2.7)-(2.16), (2.18)-(2.21), and (2.31)-(2.34), is now approximated

by the following SAA problem:

LB =v[LEV](Mq
N) =

∑
i∈I

∑
t∈T

(∑
l∈L

ΨlitYlit +
1

N

∑
h∈H

N∑
n=1

{(cpght
ϑc

)
Gn

iht+

(crht
ϑc

)
Zn

iht +
(cpghtλciht

ϑc

)
Bn

iht +
(cv2ght

ϑc

)
V n
iht +

(cuht
ϑc

)
Un
iht + γshtH

n
iht + χc

htF
n
iht−(cdhtλdiht

ϑd

)
P n
iht

})
(2.38)

As the sample size increases, the optimal solution of [LEV](Mq), i.e.,

(Yq,Gq,Zq,Bq,Vq,Uq,Wq,Hq,Pq,Sq) and the optimal objective value v[LEV](Mq) con-

verge, with a probability of one, to an optimal solution of the original [EVC] problem [62].

Assuming that the SAA problem is solved within an absolute optimality gap δ ≥ 0, we can

estimate the sample size N needed to guarantee an ϵ-optimal solution to the true problem

with a probability at least equal to (1− α) as:

N ≥ 3σ2
max

(ϵ− δ)2

(
|I||K||T |(log2)− logα

)
(2.39)

where ϵ > δ, α ∈ (0, 1), and σ2
max is a maximal variance of certain function differences

[62]. Estimating the sample size using equation (2.39) is too conservative for practical
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applications. Thus, one can choose a sample size N as a trade-off between the solution

quality obtained by solving (2.38) to the original problem (2.35) and the computational

burden needed to solve it. In each iteration of the algorithmic step, SAA provides a valid

statistical lower and upper bound for the original [EVC] problem and the process termi-

nates when the gap between the estimators falls below a pre-specified threshold value. The

main steps of the SAA approach can be explained as follows:

1. Generate O independent scenarios of size N that have different car recharging per-

centage scenarios i.e., {η1o(ω), η2o(ω), ..., ηNo (ω)}; ∀o = 1, ..., O, where η = {ηωht; ∀h ∈

H, t ∈ T , ω ∈ Ω} and solve the corresponding SAA (2.35). The lower bound prob-

lem for the [CG] algorithm, defined by (2.35) and subject to constraints (2.2)-(2.5),

(2.7)-(2.16), (2.18)-(2.21), and (2.31)-(2.34), can now be approximated by the fol-

lowing SAA problem. For notation brevity, the mathematical model can be repre-

sented as follows:

Minimize
Y ∈Y

{
ĝ(Y q

N) :=
∑
i∈I

∑
t∈T

(∑
l∈L

ΨlitYlit +
1

N

N∑
n=1

Q(Y, n)
)}

(2.40)

where each sample o consists of N realizations of independently and identically

distributed (i.i.d) random scenarios. The optimal objective value is denoted by vo
N

and the optimal solution by Ŷ
o

N ; o = 1, ..., O.

2. Compute the average of the optimal solutions obtained by solving all SAA problems,

v̄N
O and variance, σ2

v̄NO
:
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v̄N
O =

1

O

O∑
o=1

vo
N (2.41)

where v̄N
O provides a statistical lower bound on the optimal objective function value

for the original problem (2.35), i.e., v̄N
O ≤ v∗ [86]. Since O samples are generated

and v1
N , v2

N , ..., vO
N are independent, the variance of v̄N

O is given by:

σ2
v̄NO

=
1

(O − 1)O

O∑
o=1

(
vo
N − v̄N

O

)2
(2.42)

3. Pick a feasible first-stage solution Ỹ ∈ Y obtained from Step 1 of the SAA algo-

rithm, i.e., one of the solution from Ŷ
o

N and estimate the objective function value of

the original problem using a reference sample N ′ as follows:

g̃N ′(Ỹ ) :=
∑
i∈I

∑
t∈T

(∑
l∈L

ΨlitYlit +
1

N ′

N ′∑
n=1

Q(Y, n)
)

(2.43)

The estimator g̃N ′(Ỹ ) serves as an upper bound for the optimal objective function

value of the [LEV](Mq) problem which will be updated in each iteration if the value

obtained is less than the value of the previous iteration. We now generate a large set

of electric vehicle recharging scenarios (N ′) i.e., {η1(ω), η2(ω), ..., ηN ′
(ω)}; ∀n =

1, ..., N ′. Typically, the sample size N ′ is chosen to be much larger than the sample

size N in the SAA problems. As discussed by Kleywegt et al. [62], the optimal

value of an SAA problem converges to the optimal value of the “true” problem with
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a probability of one under the condition of N →∞. We can estimate the variance

of g̃N ′(Ỹ ) as follows:

σ2
N ′(Ỹ ) =

1

(N ′ − 1)N ′

N ′∑
n=1

{∑
i∈I

∑
t∈T

(∑
l∈L

ΨlitỸlit +Q(Y, n)
)
− g̃N ′(Ỹ )

}2

where Q(Y, n) represents the solution of the second-stage problem.

4. Compute the optimality gap (gapN,M,N ′(Ỹ )) and its variance (σ2
gap) using the esti-

mators calculated in Steps 2 and 3.

gapN,O,N ′(Ỹ ) = g̃N ′(Ỹ )− v̄N
O

σ2
gap = σ2

N ′(Ỹ ) + σ2
v̄NO

The confidence interval for the optimality gap is then calculated as follows:

g̃N ′(Ỹ )− v̄N
O + zα

{
σ2
N ′(Ỹ ) + σ2

v̄NO

}1/2

with zα:= Φ−1(1 − α), where Φ(z) is the cumulative distribution function of the

standard normal distribution.

2.3.3 Progressive Hedging Algorithm

Step 1 in the SAA algorithm involves solving a two-stage stochastic programming

model consisting of N scenarios. Depending on the size of |I|, |H|, and |T |, the SAA

problem can still be considered challenging from the solution standpoint. To divide the
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problem into smaller and more manageable subproblems, a scenario decomposition tech-

nique, commonly known as the Progressive Hedging Algorithm (PHA), is employed [103].

The PHA utilizes an augmented Lagrangian relaxation scheme to solve a number of indi-

vidual scenario subproblems and finally aggregate the individual scenario solutions. The

PHA offers high quality solutions in solving a variety of application-specific problems,

such as financial planning [82], fisheries management [49], surgery planning [43], biofuel

supply chain network [100, 96], and many others. Interested readers can review the studies

by Wallace and Helgason [123] and Watson and Woodruff [126] for a detailed discussion

about the theoretical properties and algorithmic implementation of PHA.

Constraints (2.8), (2.10), (2.15)-(2.19), and (2.33) in ĝ(Y q
N) (shown in Step 1 on SAA

algorithm) link the first-stage decisions with the second-stage decision variables. These

constraints will not allow problem ĝ(Y q
N) to be separable by scenarios. To remedy this

problem, we create a new variable {Y n
lit}∀l∈L,i∈I,t∈T ,n∈N ∈ {0, 1} that ensures a copy of

the first-stage decision variables is created for each scenario n ∈ N . Problem ĝ(Y q
N) can

now be rewritten as follows:

Minimize
Y,G,Z,B,U,V,W,H,P,S,X,F

1

N

N∑
n=1

∑
i∈I

∑
t∈T

(∑
l∈L

ΨlitY
n
lit +

∑
h∈H

{(cpght
ϑc

)
Gn

iht +
(crht
ϑc

)
Zn

iht+

(cpghtλciht
ϑc

)
Bn

iht +
(cv2ght

ϑc

)
V n
iht +

(cuht
ϑc

)
Un
iht + γshtH

n
iht + χc

htF
n
iht −

(cdhtλdiht
ϑd

)
P n
iht

})
(2.44)

subject to: (2.7), (2.9), (2.11)-(2.14), (2.20), (2.21), (2.31), (2.33), (2.34), and
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∑
l∈L

Y n
lit ≤ 1 ∀i ∈ I, t ∈ T , n ∈ N (2.45)

Y n
lit−1 ≤ Y n

lit ∀l ∈ L, i ∈ I, t ∈ T , n ∈ N (2.46)∑
l∈L

∑
i∈I

ΨlitY
n
lit ≤ Bt ∀t ∈ T , n ∈ N (2.47)

W n
iht ≥

∑
l∈L

ecslhtY
n
lit ∀i ∈ I, h ∈ H, t ∈ T , n ∈ N (2.48)

Hn
iht ≤

∑
l∈L

ulihtY
n
lit ∀i ∈ I, h ∈ H, t ∈ T , n ∈ N (2.49)

Sn
iht ≤

∑
l∈L

qinlhtY
n
lit ∀i ∈ I, h ∈ H, t ∈ T , n ∈ N (2.50)

P n
iht ≤

∑
l∈L

qoutlht Y
n
lit ∀i ∈ I, h ∈ H, t ∈ T , n ∈ N (2.51)∑

l∈L

p−lihtY
n
lit ≤ Gn

iht ≤
∑
l∈L

p+lihtY
n
lit ∀i ∈ I, h ∈ H, t ∈ T , n ∈ N (2.52)

V n
iht ≤

∑
l∈L

λdihtκhtfihtY
n
lit ∀i ∈ I, h ∈ H, t ∈ T , n ∈ N (2.53)

Zn
iht ≤

∑
l∈L

r+lihtY
n
lit ∀i ∈ I, h ∈ H, t ∈ T , n ∈ N (2.54)

Xn
liht ≤ Y n

lit ∀l ∈ L, i ∈ I, t ∈ T , n ∈ N (2.55)

Y n
lit = Y k

lit ∀l ∈ L, i ∈ I, t ∈ T , (n, k) ∈ N , n ̸= k (2.56)

Y n
lit ∈ {0, 1} ∀l ∈ L, i ∈ I, t ∈ T , n ∈ N (2.57)

Constraints (2.56) are known to be as nonanticipativity constraints, which link the first

and second-stage decision variables and force all the scenarios to yield the same first-

stage decision variables. This makes the model not separable by scenarios. To make the

model separable by scenarios and to apply Lagrangian relaxation, we need to rewrite the

nonanticipativity constraints. Let {Ȳlit}∀l∈L,i∈I,t∈T ∈ {0, 1} be the “overall design vector”.

The following constraints are equivalent to (2.56):
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Y n
lit = Ȳlit ∀l ∈ L,∀i ∈ I, t ∈ T , n ∈ N (2.58)

Ȳlit ∈ {0, 1} ∀l ∈ L, i ∈ I, t ∈ T (2.59)

We employ the augmented Lagrangian strategy proposed by Rockafellar and Wets

[103] to relax constraints (2.58) and obtain the following objective function:

Minimize
Y,G,Z,B,U,V,W,H,P,S,X,F

1

N

N∑
n=1

∑
i∈I

∑
t∈T

(∑
l∈L

ΨlitY
n
lit +

∑
h∈H

{(cpght
ϑc

)
Gn

iht+

(crht
ϑc

)
Zn

iht +
(cpghtλciht

ϑc

)
Bn

iht +
(cv2ght

ϑc

)
V n
iht +

(cuht
ϑc

)
Un
iht + γshtH

n
iht + χc

htF
n
iht−(cdhtλdiht

ϑd

)
P n
iht

}
+
∑
l∈L

ξξξnlit(Y
n
lit − Y lit) +

1

2

∑
l∈L

πππ(Y n
lit − Y lit)

2

)
(2.60)

where {ξξξnlit}∀l∈L,i∈I,t∈T ,n∈N defines the Lagrangian multipliers for the relaxed con-

straints and πππ defines a penalty ratio. Given the binary requirements of variables

{Y n
lit}∀l∈L,i∈I,t∈T ,n∈N and {Ȳlit}∀l∈L,i∈I,t∈T , the quadratic term

∑
l∈L
∑

i∈I
∑

t∈T ϕ(Y n
lit−

Ȳlit)
2 shown in the above objective function can be reduced as follows:

∑
l∈L

∑
i∈I

∑
t∈T

πππ(Y n
lit − Ȳlit)2 =

∑
l∈L

∑
i∈I

∑
t∈T

(
πππ(Y n

lit)
2 − 2πππY n

litȲlit + πππ(Ȳlit)
2

)
=

∑
l∈L

∑
i∈I

∑
t∈T

(
πππY n

lit − 2πππY n
litȲlit + πππȲlit

)

Meanwhile, the objective function can be reduce as follows:
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Minimize
Y,G,Z,B,U,V,W,H,P,S,X,F

1

N

N∑
n=1

∑
i∈I

∑
t∈T

(∑
l∈L

(Ψlit + ξξξnlit − πππY lit +
πππ

2
)Y n

lit+

∑
h∈H

{(cpght
ϑc

)
Gn

iht +
(crht
ϑc

)
Zn

iht +
(cpghtλciht

ϑc

)
Bn

iht +
(cv2ght

ϑc

)
V n
iht +

(cuht
ϑc

)
Un
iht + γshtH

n
iht+

χc
htF

n
iht −

(cdhtλdiht
ϑd

)
P n
iht

}
−
∑
k∈K

ξξξnlitȲlit +
1

2

∑
l∈L

πππȲlit

)

(2.61)

When the value of the overall plan {Ȳ q
lit}∀l∈L,i∈I,t∈T is fixed, the last two terms of the

above objective function become constant and thus can be eliminated from the formulation.

This allow the subproblems to be separable by scenarios, and the overall problem for each

scenario n ∈ N becomes:

Minimize
Y,G,Z,B,U,V,W,H,P,S,X,F

1

N

N∑
n=1

∑
i∈I

∑
t∈T

(∑
l∈L

(Ψlit + ξξξnlit − πππY lit +
πππ

2
)Y n

lit+

∑
h∈H

{(cpght
ϑc

)
Gn

iht +
(crht
ϑc

)
Zn

iht +
(cpghtλciht

ϑc

)
Bn

iht +
(cv2ght

ϑc

)
V n
iht +

(cuht
ϑc

)
Un
iht+

γshtH
n
iht + χc

htF
n
iht −

(cdhtλdiht
ϑd

)
P n
iht

})

(2.62)

subject to

∑
l∈L

Y n
lit ≤ 1 ∀i ∈ I, t ∈ T (2.63)

Y n
lit−1 ≤ Y n

lit ∀l ∈ L, i ∈ I, t ∈ T (2.64)∑
l∈L

∑
i∈I

ΨlitY
n
lit ≤ Bt ∀t ∈ T (2.65)

Gn
iht + Zn

iht + V n
iht + λcihtB

n
iht = W n

iht ∀i ∈ I, h ∈ H, t ∈ T (2.66)

W n
iht ≥

∑
l∈L

ecslhtY
n
lit ∀i ∈ I, h ∈ H, t ∈ T (2.67)
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λcihtη
n
htfiht −W n

iht = Un
iht ∀i ∈ I, h ∈ H, t ∈ T (2.68)

Hn
iht ≤

∑
l∈L

ulihtY
n
lit ∀i ∈ I, h ∈ H, t ∈ T (2.69)

Hn
iht −Bn

iht − P n
iht + Sn

iht = Hn
i,h+1,t ∀i ∈ I, h ∈ H\|H|, t ∈ T (2.70)

Hn
i|H|t −Bn

i|H|t − P n
i|H|t + Sn

i|H|t = Hn
i,1,t+1 ∀i ∈ I, t ∈ T \|T | (2.71)

Sn
i,1,1 = 0 ∀i ∈ I (2.72)

Sn
i,h+1,t = Bn

iht + P n
iht ∀i ∈ I, h ∈ H\|H|, t ∈ T (2.73)

Sn
i,1,t+1 = Bn

i|H|t + P n
i|H|t ∀i ∈ I, t ∈ T \|T | (2.74)

Sn
iht ≤

∑
l∈L

qinlhtY
n
lit ∀i ∈ I, h ∈ H, t ∈ T (2.75)

P n
iht ≤

∑
l∈L

qoutlht Y
n
lit ∀i ∈ I, h ∈ H, t ∈ T (2.76)

W n
iht ≤

∑
l∈L

ccaplhtX
n
liht ∀i ∈ I, h ∈ H, t ∈ T (2.77)

∑
l∈L

Xn
liht ≤

F n
iht(

1 + F n,m
iht

)2 +

(
F n,m
iht

1 + F n,m
iht

)2

∀i ∈ I, h ∈ H, t ∈ T ,

m ∈M (2.78)

Xn
liht ≤ Y n

lit ∀l ∈ L, i ∈ I, h ∈ H, t ∈ T (2.79)∑
l∈L

p−lihtY
n
lit ≤ Gn

iht ≤
∑
l∈L

p+lihtY
n
lit ∀i ∈ I, h ∈ H, t ∈ T (2.80)

V n
iht ≤

∑
l∈L

λdihtκhtfihtY
n
lit ∀i ∈ I, h ∈ H, t ∈ T (2.81)

Zn
iht ≤

∑
l∈L

rlihtY
n
lit ∀i ∈ I, h ∈ H, t ∈ T (2.82)

Y n
lit ∈ {0, 1} ∀l ∈ L, i ∈ I, t ∈ T (2.83)

Hn
iht, B

n
iht, S

n
iht, P

n
iht ∈ Z+ ∀i ∈ I, h ∈ H, t ∈ T (2.84)

Gn
iht, Z

n
iht, V

n
iht, U

n
iht, X

n
liht, F

n
iht ≥ 0 ∀i ∈ I, h ∈ H, t ∈ T (2.85)
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Here, {ξξξn,rlit }∀l∈L,i∈I,t∈T ,n∈N and πππr denote the lagrangian multipliers and penalty pa-

rameter of the PHA, respectively which are updated at each iteration r. The general idea of

the basic PHA is to solveN deterministic [LEV(PHA)] problems and obtain the consensus

parameter {Ȳ r
lit}∀l∈L,i∈I,t∈T . If the gap between the binary variable Y n,r

lit and the consensus

parameter Ȳ r
lit falls below a threshold value ϵ (i.e., ϵ = 0.001) for each l ∈ L, i ∈ I, t ∈ T ,

then the algorithm terminates; otherwise, the value of ξξξn,rlit and πππr are updated using equa-

tions (2.86) and (2.87) and the process continues.

ξξξn,rlit ← ξξξn,r−1
lit + πππr−1(Y n,r

lit − Ȳ
r−1
lit ) ∀l ∈ L, i ∈ I, t ∈ T (2.86)

πππr ← απππr−1 (2.87)

where α is a given constant which we initialize to α > 1. We further initialize ξξξn,0lit ←

0;∀l ∈ L, i ∈ I, t ∈ T , n ∈ N . Finally, πππ0 is set to a fixed positive value to ensure that

πππr → ∞ as the number of iterations, r, increases. Pseudo-code of the basic progressive

hedging algorithm is provided in Algorithm 2.

Termination Criteria: The progressive hedging algorithm terminates when one of the

following conditions is satisfied:

• 1
N

∑N
n=1

∑
i∈I
∑

l∈L
∑

t∈T |Y
n,r
lit −Ȳ r

lit| ≤ ϵ; where ϵ is a pre-specified tolerance gap,

• 10 consecutive non-improvement iterations occur,

• Maximum iteration limit is reached (i.e., itermax = 100), or

• Maximum time limit is reached (i.e., timemax = 10,800 CPU seconds).
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Algorithm 2: Progressive Hedging Algorithm
Initialize, r ← 1, ϵ, {ξξξn,rikt}∀i∈I,k∈K,t∈T ,n∈N ← 0, πππr ← πππ0

terminate← false
while (terminate = false) do

for n = 1 to N
Solve [LEV(PHA)] and obtain {Y n,r

lit }∀l∈L,i∈I,t∈T ,n∈N
end for
Calculate the consensus parameter:

Ȳ r
lit ← 1

N

∑N
n=1 Y

n,r
lit ;∀l ∈ L, i ∈ I, t ∈ T

if (r > 1) then
Update the largangian parameter:

ξξξn,rlit ← ξξξn,r−1
lit + πππr−1(Y n,r

lit − Ȳ
r−1
lit );∀l ∈ L, i ∈ I, t ∈ T

Update the penalty parameter:
πππr ← απππr−1 and α > 1

end if
if ((Y n,r

lit − Ȳ
r−1
lit )∀l∈L,i∈I,t∈T ≤ ϵ) then

terminate← true
end if
r ← r + 1

end while

2.3.4 Enhanced Progressive Hedging Algorithm

The PHA technique demonstrates high computational capability in solving small to

medium sized network problems. However, the technique fails to provide a reasonable

solution for sufficiently large sized network problems. This motivates us to explore addi-

tional enhancement techniques (e.g., local and global heuristics, dynamic penalty param-

eter updating technique, and different variants of the rolling horizon heuristic) to improve

the convergence and stability of the PHA. The following subsection investigates few PHA

enhancement techniques in an attempt to solve model [LEV(PHA)] faster.
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2.3.4.1 Penalty Parameter Updating

Prior studies such as [21, 53] show that the performance of the PHA technique can be

significantly improved by choosing an appropriate πππ value. For instance, the algorithm

converges faster to a sub-optimal solution for a sufficiently large πππ value. In contrary, the

algorithm takes a longer time to converge if a conservative value is chosen for πππ. Since

there is no way we can estimate the appropriateπππ value for a given optimization problem in

advance, we adopt the strategy proposed by Hvattum and Lokketangen [54] to dynamically

adjust the value of πππ over iterations based on the computational performance obtained

from prior iterations of the PHA algorithm. Let ∆r
1 and ∆r

2 define the indicators of the

convergence rates in the dual and primal space, respectively. The penalty value can now

be updated as follows:

∆r
1 =

∑
l∈L

∑
i∈I

∑
t∈T

∑
n∈N

(Y n,r
lit − Ȳ

r
lit)

2 (2.88)

∆r
2 =

∑
l∈L

∑
i∈I

∑
t∈T

(Ȳ r
lit − Ȳ r−1

lit )2 (2.89)

πππr =



φπππr−1 if ∆r
1 −∆r−1

1 > 0

1
φ
πππr−1 else if ∆r

2 −∆r−1
2 > 0

πππr−1 otherwise

(2.90)

where φ is a constant parameter which value is set to φ > 1.
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2.3.4.2 Heuristic Strategies

This section utilizes two heuristic strategies, referred to as local heuristic and global

heuristic, to enhance the performance of the PHA technique [28]. These strategies are

used to modify the value of Ψlit in an attempt to solve model [LEV(PHA)] faster. The

first strategy is referred to as global heuristic since this strategy adjusts the value of Ψikt

at the end of each iteration r. On the other hand, the second strategy, referred to as local

heuristic, adjusts the value of Ψlit within the scenario level.

We realize that problem [LEV(PHA)] can be decomposed into a series of N determin-

istic sub-problems. At the end of each iteration r of Algorithm 2, we can obtain the values

of the consensus parameter {Ȳ r
lit}∀l∈L,i∈I,t∈T which provides an indication of how many

times a charging station of capacity l ∈ L is opened in cell i ∈ I at time period t ∈ T

in the previous iterations. A higher value of Ȳ r
lit indicates that the charging station of a

specific size, location, and year was selected many times in the previous iterations. Con-

versely, a lower value of Ȳ r
lit indicates that the charging station of a specific size, location,

and year was not a favorable decision in most of the previous iterations. Let a and a be

the two parameters that define an upper and lower threshold value. If the value of Ȳ r
lit is

greater than the threshold value a, then lowering the Ψlit value will attract the subproblems

to use that cell more frequently in the coming iterations. Similarly, if the value of Ȳ r
lit is

lower than the threshold value a, then increasing the Ψlit value will discourage the remain-

ing subproblems from using this cell in the coming iterations. This will allow a few of the

charging stations to be fixed to value of either one or zero and thus help reduce the size of

the problem. The adjustment strategy is given below:
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Ψr
lit =



τΨr−1
lit if Ȳ r−1

lit < a

1
τ
Ψr−1

lit if Ȳ r−1
lit > a

Ψr−1
lit Otherwise

(2.91)

where Ψr
lit represents the modified fixed cost of opening a charging station of capacity

l ∈ L at cell i ∈ I in time period t ∈ T and iteration r; τ is a constant parameter whose

value is set to τ > 1; and a and a are the two constant parameters whose values are set to

0 < a < 0.3 and 0.7 < a < 1.

The global heuristic strategy can be enhanced further by modifying the selection of

Ψlit locally within the scenario level. This strategy is referred to as a local heuristic [28]

since the modification of Ψlit only impacts the current subproblem at scenario n of a partic-

ular iteration r. This strategy emphasizes modifying the costs associated with selecting a

charging station of capacity l ∈ L at cell i ∈ I in time period t ∈ T under scenario n ∈ N

at iteration r, if the gap between Y n,r
lit and Ȳ r

lit is sufficiently large. The local adjustment

strategy applied to Algorithm 2 is as follows:

Ψn,r
lit =



τΨr
lit if |Y n,r−1

lit − Ȳ r
lit| ≥ afar and Y n,r−1

lit = 1

1
τ
Ψr

lit if |Y n,r−1
lit − Ȳ r

lit| ≥ afar and Y n,r−1
lit = 0

ψr
lit Otherwise

(2.92)
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where Ψn,r
lit represents the modified Ψlit of selecting a charging station of capacity l ∈ L

at location i ∈ I in time period t ∈ T under scenario n ∈ N and at iteration r; τ is a

constant parameter whose value is set to τ > 1; and afar is a threshold value at which a

local adjustment to the Ψlit is made and is set to 0.5 < afar < 1.

2.3.4.3 Rolling Horizon Heuristic Strategy

Algorithm 2 requires solving a deterministic, multi-time period problem [LEV(PHA)]

N times. This evaluation may be considered challenging from a solution standpoint. One

way to tackle this problem is to split the planning horizon (i.e., years and hours) into

multiple slices and solve them sequentially until all the slices are investigated. To serve this

purpose, this study employs a Rolling Horizon heuristic ([CG]) that decomposes problem

[LEV(PHA)] into a series of smaller subproblems comprising a few consecutive hour-

year combinations from the overall planning horizon. The algorithm terminates when all

the hour-year combinations of the planning horizon are investigated. Interested readers

can review the studies by Balasubramanian and Grossman [11], Poudel et al. [94], and

Kostina et al. [63] to learn more about the rolling horizon heuristic. In this section, we

present three different variants of the rolling horizon heuristic. The aim is to identify

which variant of the rolling horizon heuristic provides a quality solution in solving problem

[LEV(PHA)] in a reasonable amount of time. The first variant of the rolling horizon

heuristic, referred to as [RH1], decomposes problem [LEV(PHA)] on yearly basis. The

second and third variants of the rolling horizon heuristic, referred to as [RH2] and [RH3],

decompose problem [LEV(PHA)] on hourly, and the combination of hourly and yearly
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basis, respectively. A pseudo-code of the basic Rolling Horizon heuristic is provided in

Algorithm 3.

Let [LEV(PHA(r))] be an approximate subproblem of the rolling horizon algorithm at

iteration r. We further let tr0, h
r
0, M

r, and Qr be the starting time period for years, hours,

and number of time periods for years and hours for each subproblem r, respectively. In

the rolling horizon heuristic, one can either set a fixed value of M r and Qr or vary them

across the different iterations of the algorithm. For each scenario n ∈ N , the approximate

subproblems [LEV(PHA(r))] are solved by setting the variables as: (i)
{
Y n
lit

}
∀l∈L,i∈I,t∈T ∈

{0, 1} and
{
Bn

iht, H
n
iht, S

n
iht, P

n
iht

}
∀i∈I,h∈H,t∈T ∈ Z+ for tr0 ≤ t ≤ tr0 +M r and hr0 ≤ h ≤

hr0 + Qr, (ii) 0 ≤
{
Y n
lit

}
∀l∈L,i∈I,t∈T≤ 1 and

{
Bn

iht, H
n
iht, S

n
iht, P

n
iht

}
∀i∈I,h∈H,t∈T ∈ R+ for

t > tr0 +M r and h > hr0 + Qr. After solving a subproblem, we fix the values of Y n,r
lit =

Y n,r−1
lit ,∀l ∈ L, i ∈ I, t ∈ T ; Bn,r

iht = Bn,r−1
iht ,∀i ∈ I, h ∈ H, t ∈ T ; Hn,r

iht = Hn,r−1
iht ,∀i ∈

I, h ∈ H, t ∈ T ; Sn,r
iht = Sn,r−1

iht ,∀i ∈ I, h ∈ H, t ∈ T ; and P n,r
iht = P n,r−1

iht ,∀i ∈ I, h ∈

H, t ∈ T for t < tr0 and h < hr0 and update the step size r. Note that by varying parameters

tr0, h
r
0, M

r, and Qr a number of different variants of the rolling horizon algorithm can be

developed. Figures 2.4-2.6 provide an illustration of solving a three year and four hour

time period problem using three different variants of the rolling horizon heuristic ([RH1]-

[RH3]). Later in Section 2.4.2, we analyze the settings at which a particular variant of the

rolling horizon heuristic solves problem [LEV(PHA(r))] efficiently.
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Figure 2.4: Illustration of a rolling horizon strategy for [RH1]

Figure 2.5: Illustration of a rolling horizon strategy for [RH2]
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Algorithm 3: Rolling Horizon Heuristic
r ← 1, tr0 ← 0, hr0 ← 0, M r, Qr, terminate← false
while (terminate = false) do

Set:
•
{
Y n
lit

}
∀l∈L,i∈I,t∈T ∈ {0, 1} and

{
Bn

iht, H
n
iht, S

n
iht, P

n
iht

}
∀i∈I,h∈H,t∈T ∈ Z+

for tr0 ≤ t ≤ tr0 +M r and hr0 ≤ h ≤ hr0 +Qr

• 0 ≤
{
Y n
lit

}
∀l∈L,i∈I,t∈T≤ 1 and

{
Bn

iht, H
n
iht, S

n
iht, P

n
iht

}
∀i∈I,h∈H,t∈T ∈ R+

for t > tr0 +M r and h > hr0 +Qr

Solve the approximate sub-problem [EVC(PHA(r))] using CPLEX
if(t0 > |T |) then

terminate← true
else

Fixing the values of
{
Y n
lit

}
∀l∈L,i∈I,t∈T ,

{
Bn

iht, H
n
iht, S

n
iht, P

n
iht

}
∀i∈I,h∈H,t∈T

for t < tr0 and h < hr0
end if
r ← r + 1

end while

Figure 2.6: Illustration of a rolling horizon strategy for [RH3]

2.4 Computational Study and Managerial Insights

This section summarizes our computational experiences in solving model [LEV] using

the nested algorithms proposed in Section 2.3 and offers managerial insights derived from
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a real life case study. All the algorithms are coded in GAMS 24.2.1 [39] and executed on

a desktop computer with an Intel Core i7 3.50 GHz processor with 16.0 GB RAM. We use

ILOG CPLEX 12.65 as an optimization solver.

2.4.1 Input Parameters

This study considers Washington, DC as a testing ground to visualize and validate the

modeling results. A network representation and demand distribution for Washington, DC

is shown in Figure 2.7. The main reason behind choosing Washington, DC is that the area

has a strong growing electric vehicle population over other major metropolitan cities in

US. We divide the entire map into grids of size 306 cells (i.e., |I| = 306) where each cell

corresponds to an area of approximately 1.0 mile2. The data for cell-specific parameters

are obtained only for those that have a road passing through them; otherwise, the values

for the cells are set to zero. We have considered a 5-year planning horizon starting in 2018

and ending in 2022 (|T | = 5). Further, we have drawn a representative 24 hour period

from each year of the planning horizon to account for the short term operational decisions

(|H| = 24). Note that all cost components are calculated based on 2017 dollars and are

adjusted based on inflation. The cost of opening an electric vehicle charging station that

includes a battery swap station (Ψikt) at cell i ∈ I is set to be $500,000 [40]. We consider

three different electric vehicle charging station capacities (l = 400 kWh, 500 kWh, and

600 kWh). We assume that we are given an annual budget (Bt = $5M, $6M, $7M, $8M,

and $9M) to build infrastructure for EV charging stations (which include battery swapping

5https://www-01.ibm.com/software/commerce/optimization/
cplex-optimizer/
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capabilities) for our test region in years 2018–2022. The hourly electricity pricing plan for

power grid (cpght), renewable resources (crht), and V2G (cv2ght ) are obtained from [104, 108,

91]. The projected flow of cars fiht at each cell i ∈ I of hour h ∈ H in year t ∈ T is made

based upon the number of EVs available in Washington, DC in 2014 [92]. Factors such

as density of population, hospitals, and colleges located near major roads are considered

to project fiht. We set car charging percentage ηωht = 40% and car discharging percentage

βht = 5% for our base case experimentations. The availability of grid power (giht) and

renewable resources (riht) are adopted from [31] and [97], respectively. The charging

and discharging efficiencies of EV’s are both set to be ϑc = ϑd = 90%. The maximum

and minimum SoC and DoD are set to be c+iht = d+iht = 0.90 and c−iht = d−iht = 0.20,

respectively. Finally, we set unit profit associated with battery discharging cdht = $0.03/hr,

battery storing cost γsht = $0.02/hr, and rated EV battery capacity bcap = 35 kWh for our

base case experiments.

2.4.2 Analyzing the Performance of Solution Algorithms

This section presents our computational experiences in solving model [LEV] using the

algorithms proposed in Section 2.3. To help the readers follow our solution approaches,

we introduce the following notations to represent the algorithms:

• [CG]: represents the Constraint Generation ([CG]) algorithm (described in Section

2.3.1)
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(a) (b)

Figure 2.7: (a) Network representation (original map obtained from [6]) and (b) geograph-

ical demand distribution of Washington DC

• [CG+SAA]: represents a [CG] algorithm where the subproblems of the [CG] are

solved using a Sample Average Approximation ([SAA]) algorithm (described in Sec-

tion 2.3.2)

• [CG+SAA+PHA]: represents a [CG] algorithm where the subproblems of the [CG]

are solved using an integration of [SAA] and a Progressive Hedging ([PHA]) algo-

rithm (described in Section 2.3.3)

• [CG+SAA+PHA+HR]: represents a [CG] algorithm where the subproblems of the

[CG] are solved using an integration of [SAA] and an enhanced [PHA] algorithm

that uses the enhancement techniques described in Section 2.3.4.1

• [CG+SAA+PHA+HR+RH]: represents a [CG] algorithm where the subproblems of

the [CG] are solved using an integration of [SAA] and an enhanced [PHA] algorithm
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that uses the enhancement techniques described in Section 2.3.4.1, 2.3.4.1, 2.3.4.2,

and 2.3.4.3

The algorithms presented above are terminated when at least one of the following crite-

ria is met: (a) the optimality gap (i.e., ϵ = |UB−LB|/UB) falls below a threshold value ϵ

= 0.01, (b) the maximum time limit timemax = 36,000 (in CPU seconds) is reached, or (c)

the maximum number of iteration itermax = 100 is reached. Additionally, to terminate the

progressive heading algorithm, some additional stopping criteria are used (described at the

end of Section 2.3.3). Table 2.1 presents the size of the deterministic equivalent problem

of the [LEV] model. Note that the twelve problem instances, reported in Table 2.1, are

produced by varying the size of |I|, |H|, and |T |.

Table 2.1: Problem size of the test instances

Case |L| |I| |H| |T | Binary
variables

Integer
variables

Continuous
variables

Total
variables

Total
constraints

1 3 100 24 5 1,500 48,000 48,000 97,500 135,505
2 3 100 24 10 3,000 96,000 96,000 195,000 271,010
3 3 100 48 5 1,500 96,000 96,000 193,500 267,505
4 3 100 48 10 3,000 192,000 192,000 387,000 535,010
5 3 200 24 5 3,000 96,000 96,000 195,000 271,005
6 3 200 24 10 6,000 192,000 192,000 390,000 542,010
7 3 200 48 5 3,000 192,000 192,000 387,000 535,005
8 3 200 48 10 6,000 384,000 384,000 774,000 1,070,010
9 3 306 24 5 4,590 146,880 146,880 298,350 414,635
10 3 306 24 10 9,180 293,760 293,760 596,700 829,270
11 3 306 48 5 4,590 293,760 293,760 592,110 818,555
12 3 306 48 10 9,180 587,520 587,520 1,184,220 1,637,110

The first set of experiments (reported in Table 2.2) provide a computational compar-

ison between CPLEX and three different variants of the rolling horizon heuristic (e.g.,
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[RH1], [RH2], and [RH3]). Note that the subproblems of the rolling horizon heuris-

tic are solved using CPLEX where we set a maximum time limit of 10,800 CPU sec-

onds for each of the subproblems. Results in Table 2.2 indicate that all three variants of

the rolling horizon heuristic demonstrate improvements over CPLEX, particularly as the

problem size increases. On average, algorithm [RH3] provides a 17.78% and 19.07%

faster solution over algorithms [RH1] and [RH2], respectively while dropping the aver-

age optimality gap from 1.24% and 1.20% to 0.91%. Note that rolling horizon heuristic

only provides an upper bound for model [LEV]. Therefore, we use the lower bound from

CPLEX to compute the optimality gap (Gap (%)) for the rolling horizon heuristics i.e.,

100× (UB[RH]−LBCPLEX)/UB[RH]%. In summary, the [RH3] seems to offer high qual-

ity solutions consistently within the experimental range.
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The second set of experiments analyze how using different accelerated techniques (de-

scribed in Section 2.3.4.1 and 2.3.4.2) along with three different variants of the rolling

horizon heuristic (i.e., [RH1], [RH2], and [RH3]) speed up the convergence and improve

the quality of the progressive hedging algorithm ([PHA]). We set the scenario size N =

{25, 50} to test the performance of the algorithms. Table 2.3 summarizes the compu-

tational benefits obtained by implementing different enhancement techniques inside the

[PHA] algorithm. Results indicate that implementing different variants of the rolling hori-

zon heuristic substantially improve the performance of the [PHA] algorithm. Clearly, algo-

rithm [PHA+HR+RH3] outperforms the remaining algorithms (e.g., [PHA], [PHA+HR],

[PHA+HR+RH1], and [PHA+HR+RH2]) by solving 22 out of the 24 problem instances

by obeying the pre-specified termination criteria. On average, algorithm [PHA+HR+RH3]

provides a 71.5%, 40.2%, 8.5%, and 9.9% faster solution over algorithms [PHA], [PHA+HR],

[PHA+HR+RH1], and [PHA+HR+RH2], respectively, while maintaining an average op-

timality gap below 1.0%. In summary, algorithm [PHA+HR+RH3] seems to offer high

quality solutions consistently within the experimental range. Note that the results of al-

gorithms [RH1] and [RH2] are not presented in the next two set of experiments, since

algorithm [RH3] consistently produces high quality feasible solutions.
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To see the benefits of using different enhancement techniques in each replication of

the [SAA] algorithm, a third set of experiments is introduced. Figure 2.8 compares the

average runtime spend solving each replication of the [SAA] algorithm using algorithms

[SAA+PHA], [SAA+PHA+HR], and [SAA+PHA+HR+RH3]. For this experiment, a

small problem instance with a problem size |L| = 3, |I| = 100, |H| = 24, |T | = 5, N =

10, and M = 40 is considered. From figure 2.8 it is evident that incorporating different

enhancement techniques improves the runtime in each replication of the [SAA] algorithm.

More specifically, use of algorithm [SAA+PHA+HR] reduces runtime significantly over

algorithm [SAA+PHA]. Notice that further reduction in computational time is achieved

by employing the rolling horizon heuristic ([SAA+PHA+HR+RH3]) inside algorithm

[SAA+PHA+HR]. Finally, on average, algorithm [SAA+PHA+HR+RH3] generates a

solution 1.2 and 1.6 times faster than the algorithms [SAA+PHA+HR] and [SAA+PHA],

respectively.

The last set of experiments presents the results from solving model [LEV] using the

algorithms proposed in Section 2.3 (shown in Table 2.4). To test the performance of the

accelerated algorithms, we use Cases 9-12 (the largest test cases from Table 2.1) and vary

the sample size N and replication number M in the [SAA] algorithm to obtain 24 dif-

ferent problem instances. A large scenario size, N ′ = 500, is used to evaluate the [SAA]

gap. We do not present the results obtained from CPLEX since CPLEX runs out of mem-

ory while solving all the problem instances reported in Table 2.4. Results indicate that

[CG] is able to solve only 6 out of 24 problem instances by obeying the pre-specified

termination criterions. The performance improved slightly by incorporating [SAA] inside
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Figure 2.8: Comparison of solution time in each replication of the [SAA] algorithm

the subproblems of the [CG] framework, referred as the [CG+SAA] algorithm, with an

ability to now solve 14 out of 24 problem instances as reported in Table 2.4. The perfor-

mance of the [CG+SAA] algorithm can be enhanced further by solving the subproblems

of this algorithm using the [PHA] algorithm, referred to as the [CG+SAA+PHA] algo-

rithm. With this enhancement, algorithm [CG+SAA+PHA] is now able to solve 20 out

of 24 problem instances while resulting in less than a 1% optimality gap within the spec-

ified time limit. The benefits of using the algorithms become even more obvious when

the heuristic enhancement strategies are incorporated in the [CG+SAA+PHA] algorithm,

referred to as the [CG+SAA+PHA+HR] algorithm. It is observed that with these en-

hancement strategies, the average optimality gap of the [CG+SAA+PHA+HR] algorithm

drops to 0.54% from 0.74% as reported for the [CG+SAA+PHA] algorithm. Furthermore,

the results in Table 2.4 indicate that algorithm [CG+SAA+PHA+HR] is now capable of
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solving 22 out of 24 problem instances by obeying the pre-specified termination crite-

ria. Finally, we observe a significant improvement in computational efficiency when the

rolling horizon heuristic is incorporated in the [CG+SAA+PHA+HR] algorithm, referred

to as the [CG+SAA+PHA+HR+RH3] algorithm. As is found in Tables 2.2 and 2.3, the

rolling horizon heuristic variant [RH3] provides superior computational performance over

the other two variants (e.g., [RH1] and [RH2]). Thus, the [RH3] algorithm is utilized

inside the [CG+SAA+PHA+HR+RH3] algorithmic framework. With this enhancement,

[SAA] is now able to solve 23 out of 24 problem instances by obeying the pre-specified

termination criteria. We further observe that algorithm

[CG+SAA+PHA+HR+RH3] on average saves 50% in computation time over algorithm

[CG+SAA+PHA+HR] in reporting the optimality gaps presented in Table 2.4. In sum-

mary, algorithm [CG+SAA+PHA+HR+RH3] seems to offer high quality solutions con-

sistently within the experimental range.
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2.4.3 Experimental Results
2.4.3.1 Impact of Load Congestion Cost χc

ht on System Performance

The first set of experiments analyzes the impact of load congestion cost χc
ht on system

performance. For the base case, load congestion cost is set at $10 per hour. Figure 2.9

portrays a relationship between the load congestion cost and the number of charging sta-

tions opened, |Y|. Clearly, the decision to open a station is highly impacted by this cost.

It is observed that as the value of χc
ht increases the number of charging station opened

decreases. Moreover, it is important to notice that after a certain threshold value of χc
ht

the line becomes a flat. This is the critical point after which the model does not open any

additional charging stations and thus the EVs’ demand is satisfied via other distribution

companies by incurring a higher penalty cost.
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Figure 2.9: Impact of χc
ht on opening charging station decisions
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We now evaluate the optimal planning decisions for charging stations while considering

a low (i.e., χc
ht = $5/hour) and a high congestion cost (i.e., χc

ht = $20/hour) into account.

Figures 2.10 and 2.11 demonstrate the network under low and high load congestion cost.

Results indicate the number of cells with charging station |Y| decreases with an increase in

load congestion cost. For instance, in year 2018, a total of six charging stations are selected

for a low load congestion cost compared with five stations when a higher load congestion

cost is in place. Among the six charging stations, three are selected with a small size

capacity, two of medium size capacity, and the remaining one with large size capacity. On

the contrary, for the high load congestion cost case, among the five charging stations, two

are selected with small size capacity, one of medium size capacity, and the remaining two

with large size capacity. It is important to state that although with the increase in load

congestion cost, the number of charging stations opened decreases; however, the tendency

to select the charging station with higher load capacity increases. This implies that the load

congestion cost directly impacts both the number and size of charging stations.

2.4.3.2 Impact of Electric Vehicle Charging Percentage (ηωht) Variability on System
Performance

The second set of experiments investigates how different level of car charging percent-

age ηωht impact system performance. To serve this purpose, we construct three different

realistic scenarios. In the first scenario (base case), we solve the [LEV] model using the

input parameters discussed in Section 2.4.1. The second and third scenarios are created

by setting ϵ to 5% and 50% to represent the low and high car charging percentage levels.

We employ Monte Carlo simulation to generate these scenarios where the car charging

66



www.manaraa.com

Figure 2.10: Electric vehicle charging station location under a low load congestion cost

scenario
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Figure 2.11: Electric vehicle charging station location under a high load congestion cost

scenario
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percentage for each period is independent and varies in the range [ηηηht(1 − ϵ), ηηηht(1 + ϵ)]

for each hour h ∈ H in year t ∈ T . Note that ηηηht represents the mean car charging per-

centage scenario for each hour h ∈ H in year t ∈ T . Furthermore, we assume that the car

charging percentage follows a uniform distribution. Figures 2.12 and 2.13 show the de-

ployment of charging stations Y (symbol “△” represents small size charging station, “⃝”

represents medium size charging station, and “D” represents large size charging station) for

the second and third case scenarios. Results indicate that the number of charging stations

increases with the increase in variability of the car charging percentage under a specific

budget limit. More specifically, the model decides to open an additional 26.83% charging

stations to counter high car charging percentage variability over the low car charging per-

centage variability. It is important to note that for the high variability case of car charging

percentage, the charging stations are distributing their capacities to minimize the overall

system costs (shown in Figure 2.13).

Figure 2.14 illustrates the impact of car charging percentage variability ηωht on system

performance. It is evident from the results that, with increasing the level of car charg-

ing percentage variability the amount of power utilized to satisfy the electricity demand

from diversified power sources (e.g., grid, solar, V2G) increases as well. Clearly, model

[LEV] is highly responsive to a number of time-dependent parameters such as solar power

availability, electricity prices, vehicle flows, which severely impact the hourly operational

decisions of a charging station located in cell i ∈ I of a given year t ∈ T . For example,

Figures 2.14(a) and 2.14(c) illustrate that the EV power demand is satisfied primarily via

the grid and V2G sources during low cost operating hours and solar power unavailability
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Figure 2.12: Impact of low electric vehicle charging percentage (ηωht) variability on system

performance
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Figure 2.13: Impact of high electric vehicle charging percentage (ηωht) variability on system

performance

71



www.manaraa.com

(i.e., from 8:0 P.M. to 8:0 A.M.). On the contrary, as shown in Figure 2.14(b), the demand

is satisfied first via solar and then via grid and V2G during peak operating hours (i.e., from

10:0 A.M. to 2:0 P.M.). Figure 2.15 signifies the impact of car charging percentage vari-

ability on the battery-related decisions when the [LEV] model fulfills demand by swapping

batteries in the tested region. It is observed that to cope with high power demand variabil-

ity, the charging stations decide to charge more batteries during off peak hours (shown in

Figure 2.15(c)) which they then discharge during peak hours (shown in Figure 2.15(d)).

Since more batteries are charged during off peak hours, more batteries are required to be

stored in the charging stations during those operating hours as illustrated in Figure 2.15(b).

Note that in Figures 2.14 and 2.15, and the figures introduced later in this manuscript,

we denote G
ω

iht =
∑

i∈I,h∈H,t∈T ,ω∈Ω ρωG
ω
iht/|Y∗|; Zω

iht =
∑

i∈I,h∈H,t∈T ,ω∈Ω ρωZ
ω
iht/|Y∗|;

V
ω

iht =
∑

i∈I,h∈H,t∈T ,ω∈Ω ρωV
ω
iht/|Y∗|; Bω

iht =
∑

i∈I,h∈H,t∈T ,ω∈Ω ρωB
ω
iht/|Y∗|; Hω

iht =∑
i∈I,h∈H,t∈T ,ω∈Ω ρωH

ω
iht/|Y∗|; Sω

iht =
∑

i∈I,h∈H,t∈T ,ω∈Ω ρωS
ω
iht/|S

∗|; and

P
ω

iht =
∑

i∈I,h∈H,t∈T ,ω∈Ω ρωP
ω
iht/|Y∗| be the average consumption of grid, solar, and V2G

power and the number of batteries demand, stored, charged, and discharged in a charging

station located in cell i ∈ I on hour h ∈ H of year t ∈ T . Moreover, we denote |Y∗| as

the number of charging stations opened in cell i ∈ I of year t ∈ T . Overall, we observe

that the car charging percentage variability levels highly impact the operational decisions

in the electric vehicle charging stations.
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Figure 2.14: Impact of car charging percentage (ηωht) variability on utilizing resources
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Figure 2.15: Impact of car charging percentage (ηωht) variability on real-time demand re-

sponse
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2.4.3.3 Impact of λciht and λdiht on System Performance

The third set of experiments analyzes the impact of average unit power charging re-

quirement for a car λciht and average unit power discharged from a car λdiht on system

performance. The average unit power charging requirement for each car at cell i ∈ I in

hour h ∈ H of year t ∈ T is calculated based on the SoC of the electric vehicles coming

to the stations for charging. Similarly, the average unit power discharged from a car at cell

i ∈ I in hour h ∈ H of year t ∈ T is calculated based on the DoD of the electric vehicles

discharging at the station. Realizing that the electric vehicles coming to a station, whether

for charging or discharging, will have different levels of remaining power ((c+iht, c
−
iht), (d+iht,

d−iht)) in their batteries. To incorporate these scenarios, we construct two cases: (i) average

unit power charging requirement for each car is considered to be stochastic λcihtω (where

λcihtω is generated using a uniform distribution between [λciht(1− ϵ), λciht(1 + ϵ)]), and (ii)

the average unit power discharged from a car is considered as stochastic λdihtω (where λdihtω

is generated using a uniform distribution between [λdiht(1 − ϵ), λdiht(1 + ϵ)]). We set ϵ =

10% to account for the variations in generating scenarios. It is observed from the results

in Figures 2.16 and 2.17 that considering both λcihtω and λdihtω as stochastic increases the

number of charging stations to be opened. For instance, uncertainty in λcihtω increases the

average number of charging station opened decisions by 18.18%. A network representation

for this instance is shown in Figure 2.16. However, we observe that the stochastic param-

eter λdihtω provides less sensitivity in the decision to open charging stations compared to

λcihtω. For example, experiments with the stochastic parameter λdihtω result in an increase in
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the average number of charging station opened by 9.09%. Figure 2.17 portrays the network

representation for this instance.

Figure 2.16: Impact of λcihtω on system performance

2.5 Conclusion

This paper proposes a novel optimization framework that integrates both long-term

multi-period investment decisions and short-term hourly operational decisions to design

and manage charging stations operating under power demand uncertainty. A two-stage

stochastic mixed-integer programming model [LEV] is developed that not only decides

the optimal size, location, and timing for opening charging stations over a long-term plan-
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Figure 2.17: Impact of λdihtω on system performance
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ning horizon, but it also helps with the short-term hourly operational decisions (number

of batteries charged, discharged, and stored, along with usage of V2G, renewable, and

grid power) while simultaneously managing load congestion and supporting the stochastic

power demands at the charging stations. To solve this challenging problem, a highly cus-

tomized hybrid decomposition algorithm is proposed. The hybrid algorithm combines con-

straint generation and sample average approximation method with an enhanced progressive

hedging algorithm. Moreover, the hybrid algorithm incorporates several algorithmic im-

provements such as a penalty parameter updating technique, local and global heuristics,

and different variants of the rolling horizon heuristic. Computational experiments reveal

that the enhanced variant of the hybrid algorithm [CG+SAA+PHA+HR+RH3] is capable

of producing consistently high-quality solutions to realistic large-sized problem instances

within a reasonable amount of time.

We use Washington, DC as a testing ground to evaluate the performance of the model-

ing results. The numerical experiments reveal some managerial insights about the impact

of load congestion on the design and management of charging stations. It is observed

that as the load congestion cost increases, the number of charging stations decreases, but

there is a tendency to open larger capacity charging stations, which reveals that the con-

gestion cost has a substantial impact in charging station investment decisions. Through

investigation it has been also found that the system is highly sensitive towards car charging

percentage variability which results in selection of different location of charging stations.

This ultimately affects the short-term hourly operational decisions of the charging stations.

Furthermore, a sensitivity analysis is carried out considering the impact of uncertainty in
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the average unit power charging requirement (λciht) and the average unit power discharged

(λdiht) from each car on the decision to open charging stations. Results indicate that the

model recommended increasing the number of charging stations opened by 18.18% and

9.09% for the uncertainty in λciht and λdiht, respectively. The proposed model and results

can help decision makers to develop a future sustainable transportation system that will

add value not only to the economy, but also positively impact the environment we live in.

This work can be extended in several research directions. This study only considers

load congestion; however, in reality congestion may arise in serving EV’s on the charging

stations. Furthermore, this work assumes that the power network is robust and will never

fail. However, power network is frequently impacted by a number of weather-related ex-

treme events (e.g., ice storms, hurricanes, tornados) and/or human-induced events (e.g.,

cyber-attacks). It will be interesting to see how congestion at charging stations can be

managed under facility disruptions. These issues will be investigated in future studies.
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CHAPTER III

AN ENERGY SHARING STOCHASTIC MODEL AMONG ELECTRIC VEHICLE

CHARGING STATIONS AND COMMERCIAL BUILDINGS, AND POWER GRID

3.1 Introduction

Commercial buildings and road transportation sectors utilize a significant portion of

energy which causes global challenges like climate change and resource scarcity. Ac-

cording to the U.S. Energy Information Administration [116], buildings and road trans-

portation sectors consume approximately 43.35% and 28.79% of total energy generated

in the United States, respectively. Regarding indirect emissions, both sectors causes ap-

proximately 78.9% of greenhouse gas (GHG) emissions, of which the building and trans-

portation sectors are responsible for 44.6% and 34.3%, respectively [117]. Recently, the

growing concerns of energy efficiency, dependence on fossil fuels, and environmental im-

pacts have attracted increasing attention on smart buildings and electric vehicles (EVs) in

relation to commercial building and road transportation sectors, respectively.

A smart building is a structure utilizing automated processes to control the building’s

operations including heating, ventilation, air conditioning, lighting, security, and other

systems. According to [114] an undeniable fact about smart building management is the

need to accurately coordinate its electrical and thermal loads. To achieve greater economic

performance and environmental sustainability, an efficient energy management system is
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needed which can optimally coordinate the generation, consumption, and storage of energy

across the available resources.

Electric vehicle sales in the U.S. increased by 22% from 2015 to 2016 and it is an-

ticipated that there will be approximately 2.7 million EVs on the U.S. road by 2020 [56].

Furthermore, it is expected that the EV market share will hit 10% by 2025 [56]. Higher

EV market penetration brings both challenges and opportunities in the area of power grid

(PG) management. Unmanaged charging of EVs might trigger an extreme swell in elec-

tricity demand at peak hours and, consequently, negatively affect the stability and security

of the PG. This being the case, there is an urgent need to manage EV charging activity

efficiently to promote widespread adoption of EVs. Towards this goal, this study investi-

gates optimal operational strategies in relation to smart commercial buildings and electric

vehicle charging stations to optimize individual and integrated operations under systems

uncertainty.

The PG is faced with a variety of challenges from the viewpoint of sustainable devel-

opment of advanced technologies. Therefore, the future power grid, known as the smart

grid, together with smart commercial buildings defines the next-generation of electrical

power generation and consumption systems, respectively, which are characterized by in-

creased utilization of real time communications, information technology, and control and

management in the production, distribution, and consumption of electrical energy. The

aim of employing an upgraded smart grid together with smart commercial buildings is to

allow two-way electricity and information flow between them so that they are capable of

monitoring and responding to demand changes.
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One possible way to alleviate excessive loads on the PG is to design EV charging

stations that integrate renewable energy resources (RES) with vehicle-to-grid (V2G) re-

sources, while planning optimal charging schedules for EVs. A stream of studies have

addressed the integration of the RES with V2G. Liu et al. [68] and Marmaras et al. [77]

study the effects of EV smart charging patterns on power system scheduling, while consid-

ering coordination of wind energy, thermal units, and V2G. Likewise, He et al. [48] present

a global and local scheduling model that is able to make charging and discharging deci-

sions for EVs with the goal of minimizing overall system cost. Another study proposed

by Ortega et al. [88] integrates V2G with power systems in order to achieve better effi-

ciency along with security while operating under an existing power infrastructure. Along

the same line, Haddadian et al. [46, 45] study the effects of considering V2G and RES as

viable resources for the smart grid. Similarly, Fathabadi [33] studies the different effects

of incorporating V2G and RES with a power network. The goal is to identify the best co-

ordination that is effective in sustaining the system while reducing cost and loss of power

production. Jin et al. [59] and Hong et al. [51] propose a stochastic optimization model to

minimize the average cost of utilizing RES under system uncertainty. Another study ad-

dressed by Zhang et al. [134] introduced a scheduling model to minimize the mean waiting

time for charging electric vehicles at EV charging stations equipped with multiple plug out-

lets and the availability of RES. The authors consider arrival time of EVs, fluctuation in

grid power prices, and the RES generation level using a markov decision process (MDP).

The existing studies provided along this line attempt to manage operational decisions for a
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single charging station while there is no considerable attention given to cluster-based EV

charging stations.

Some studies investigate battery related activities at battery swapping stations where an

EV can quickly exchange its depleted battery with a fully-charged battery. Pan et al. [89]

present a two-stage stochastic programming model to determine the optimal location of

battery swapping stations and then make appropriate operational decisions (e.g., the num-

ber of charged and discharged batteries) based upon realized battery demands, EV loads,

and production of RES energies. Discharging batteries to the PG during peak hours is an

important feature of the proposed model. Similarly, Worley and Klabjan [129] present a

dynamic programming model to determine the number of purchased batteries and their

charging time based on dynamic changes in the PG pricing rate. Along the same line, Mak

et al. [74] propose various models that aid the planning process for establishing battery

swapping infrastructure based on a robust optimization framework that considers uncer-

tainty in demand. The authors have determined the potential impact of battery standard-

ization and others technology advancements on the optimal infrastructure establishment

strategy. Nurre et al. [87] develop an integer programming model to determine the optimal

operational decisions (e.g., the number of charged, discharged, and exchanged batteries)

of a battery swapping station over a pre-specified time horizon. Liu et al. [70, 71] propose

an optimization model to determine energy exchange strategies of a battery swapping sta-

tion considering solar energy availability and demand management decisions (e.g., optimal

pricing, and the number of charging and discharging batteries). Recently, Widrick et al.

[127] demonstrates optimal policies for battery swapping station management, integrated
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with V2G capability, to control charging and discharging operations under a non-stationary

stochastic demand for battery swap, non-stationary prices for charging depleted batteries,

and non-stationary prices for discharging fully-charged batteries. Note that most of the

existing studies provided along this line attempt to optimize battery management deci-

sions (e.g., hourly charging, discharging, storing, and exchanging) within a battery facility,

while there is no considerable attention given to the management of cluster-based charging

stations that include capabilities for both battery swapping and EV charging.

In addition to PG load reduction and EV charging station management, another pos-

sible way to reduce the energy consumption from the two main sectors (i.e., commercial

buildings and road transportation) is through vehicle-to-building (V2B) connection capa-

bility. In the V2B integration mode, a smart commercial building can cooperate with an

EV charging station(s) to achieve higher energy efficiency and lower network costs. This

being the case, two-way electricity flow among related buildings and charging stations can

help manage demand fluctuation. Flores et al. [36] show that network costs can be reduced

by integrating a charging station with a commercial or industrial building using a coordi-

nated operation strategy. Karan et al. [60] investigate possible CO2 emission reduction

and the effectiveness of GHG mitigation strategies based on the current trend of energy us-

age in transportation and building sectors. In another study, Clarke et al. [25] and Stadler

et al. [109] demonstrate how the design of distributed energy systems can be improved

by increasing participation of EVs battery storage, which enhances system flexibility and

facilitates integration of further distributed energy resources such as solar and wind en-

ergy. Pang et al. [90] and Su et al. [111] demonstrate that V2B connections provide some
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benefits including backup power, high power quality for buildings, and peak shaving in the

PG. Additionally, the authors also state that V2B integration can significantly improve de-

mand side management and power outage. Gough et al. [41] find that participating in both

the peak power and the ancillary services market may prove the most profitable for V2B

connections. Sehar et al. [107] and Liu et al. [69] propose a heuristic operation strategy

for a commercial building microgrid equipped with EVs and a photovoltaic (PV) system

to improve self-consumption capability of PV energy. Erdinc [32] considers both pric-

ing scheme and peak power limiting on demand response, which can further improve the

economic advantage of the home energy management structure by increasing flexibility.

To the best of the author’s knowledge, none of the prior studies have investigated the

effects that integrated cluster-based smart commercial buildings and EV charging stations

will have on operational decisions under uncertainty. To fill this gap in the literature, this

study proposes a novel collaborative energy sharing decision model to study energy shar-

ing among a cluster of commercial buildings and EV charging stations in concert with

the PG. The research problem is formulated as a two-stage stochastic mixed-integer linear

programming (MILP) model and then solved using an enhanced Sample Average Approx-

imation (SAA) method. The efficiency of the SAA method is enhanced by generating

some problem specific valid inequalities. Another contribution is the application of the

proposed MILP model to a real life case study constructed based upon the road network

of San Francisco, California. Additionally, an extensive analysis is performed to inves-

tigate the energy network cost and design under different operating conditions pertaining
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to demand variability and power transaction among network entities. From these results

relevant managerial insights are provided.

An outline of this paper is as follows. Section 3.2 introduces the network structure, the

problem description, and the model formulation, which is followed by problem specific

valid inequalities. The proposed solution approach to solve the mathematical problem is

then discussed in Section 3.3. The first part of Section 3.4 describes the data used to

generate problem instances along with a scenario generation mechanism. The second and

third parts of this section represent, respectively, the performance of the proposed solution

approach and sensitivity analysis results, obtained by varying a number of factors of our

proposed optimization model. Finally, Section 3.5 concludes our study by summarizing

the key managerial insights obtained from this study and offers possible future research

directions.

3.2 Problem Description and Model Formulation

This section determines the energy sharing among all entities at a energy network in-

cluding EV charging stations, commercial buildings, and power grid along with collabora-

tive decision scheme inside each entity. The network structure and the problem description

are provided which are followed by a mixed-integer linear programming (MILP) model to

solve the research problem optimally. The purpose is to minimize the overall network cost

of energy sharing with respect to energy demand of entities, which allows decision makers

for serving demands in an efficient way. In addition, valid inequalities are proposed to

accelerate the solution of the problem.
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3.2.1 Network Structure

The electricity, cooling, and heating demands of commercial buildings along with the

electricity demand of EV charging stations are supplied with respect to limited energy

resources at both inside and outside of network entities. Inside energy resources of a com-

mercial building include the RES, a thermal energy storage (TES), a combined cooling,

heating, and power (CCHP) system (consisting of a power generation unit (PGU), a heat re-

covery subsystem (HRS), an absorption chiller, and a heating exchanger), a battery storage

called commercial-grade battery, and an auxiliary boiler. Likewise, inside energy resources

of an EV charging station include the RES, vehicle-to-grid (V2G), and swappable batter-

ies. Finally, outside energy resources of commercial buildings and EV charging stations

are the PG and transnational energy among related commercial buildings and EV charging

stations. Each building might be connected to more than one EV charging station and vice

versa, while both are connected to only one PG. Figure 3.1 demonstrates the structure of

energy network consisting of a PG, a commercial building, and an EV charging station.

In relation to a commercial building, the PGU provides a portion of the electricity en-

ergy required for the building, while its surplus electricity is stored at commercial-grade

battery. Required thermal energy of commercial buildings might not be satisfied only

through an auxiliary boiler due to its limited capacity. In addition, the PGU is capable of

supplying thermal energy to fulfill thermal demand. Therefore, there is a need to consider

thermal load requirement of commercial buildings into energy network since thermal en-
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Figure 3.1: Energy network illustration of two-way energy flow among network entities

ergy generated by the PGU is the outcome of the PGU electricity generation. The thermal

load requirement of the building is fulfilled from the waste heat of the PGU recovered

through the HRS in the CCHP system and/or a auxiliary boiler. The auxiliary boiler con-

verts fuel into heat to compensate the possible shortage of thermal load on the building. An

absorption chiller and a heating exchanger are used as the cooling and heating components

(the CC and HC, respectively) in the CCHP system, while surplus thermal energy of both

the PGU and the auxiliary boiler is stored at the TES. Therefore, commercial-grade battery

and the TES control any fluctuation as a result of the stochasticity in prime mover of the

electricity and thermal energies, respectively. In relation to an EV charging station, some

vehicles swap their battery, while the others are charged through charging stations.

In relation to transnational energy, each commercial building/EV charging station can

cooperate with an EV charging station(s)/ a commercial building(s) to send its surplus

energy, i.e., V2B integration. This cooperation leads to more energy efficiency in energy

network. Thus, the PG supplies the electric load requirements of commercial buildings and
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EV charging stations if their self-supplied electricity can not satisfy the electric demands

of both; otherwise, their surplus electric energy is sent back to the PG. On the other hand,

if the self-supplied electricity of commercial buildings and EV charging stations along

with the electricity supplied by the PG are not sufficient to satisfy electric load required

for commercial buildings and EV charging stations, then electricity shortage might be im-

ported from outside of the network and, consequently, a penalty cost is considered. As a

result, the electric load of a commercial building is supplied by the PGU, a commercial-

grade battery, the RES, the PG, and V2B connection, while the electric load of an EV

charging station is supplied by the RES, the PG, swapped batteries, and a transnational

energy sent by a commercial building(s). Figure 4.1 demonstrates the structure and energy

flow among network entities along with components of each entity.

3.2.2 Problem description

The research problem is to determine the optimal energy flow through a set of time

periods T among a set of commercial buildings B, a set of EV charging stations I, and

a PG. In addition, optimal operation strategies and collaborative decision scheme among

components of each entity in energy network are determined in each time period. Those

strategies and decisions determine the amount of energy flow through the CCHP system,

the RES, the TES, the boiler, and the commercial-grade battery of each commercial build-

ing, along with the amount of energy flow through V2G and the RES as well as the number

of stored, charged, discharged, and exchanged EV batteries of each EV charging station.
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Figure 3.2: Energy network illustration of energy flow among network entities and com-

ponents

Each commercial building is associated to a subset of EV charging stations Ib ∀b ∈ B,

while each EV charging station is associated to a subset of commercial building Bi ∀i ∈ I.

The demand of commercial buildings and EV charging stations are modeled as a ran-

dom variable of which probability distribution might not be known in advance. Accurate

prediction, even for small-scale network, is difficult due to the stochastic nature of network

entities and components along with the uncertainty in available resources. This being the

case, a set of scenarios Ω is determined, where each scenario is associated with a posi-

tive probability. Then, the total load including electric, cooling, and heating loads of each

commercial building is determined in each time period under each scenario. In addition,

the total electric load of each EV charging station is determined in terms of the expected
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number of electric vehicles traversed through the charging station in each time period and,

consequently, the percentage of those that requires to be charged under each scenario.

Likewise, expected V2G power availability is determined in terms of the percentage of

electric vehicles required to be discharged in each time period under each scenario. The

assumptions of the research problem are summarized as follows:

• limited fuel consumption capacity of PGU/boiler

• fixed-size RES for commercial buildings/EV charging stations

• maximum and minimum rate of charging/discharging of commercial-grade battery/TES

• initial, maximum, and minimum SoC1 level of commercial-grade battery/the TES

• limited capacity of commercial-grade battery/TES

• limited energy flow from PG to all network entities

• limited energy flow from PG to commercial buildings/EV charging stations

• limited energy flow to PG from commercial buildings/EV charging stations

• limited transnational energy among related commercial buildings and EV charging

stations

• limited number of batteries stored in an EV charging station

• limited number of plug-ins for charging/discharging of batteries in an EV charging

station

• limited solar radiation

• electricity-/fuel-to-carbon emission
1SoC stands for state of charge which is the ratio of available energy to the maximum storage energy in

commercial-grade battery/TES
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3.2.3 Model Fomulation

Since electricity demand is stochastic, a two-stage stochastic MILP model is proposed

to determine energy flow among network entities as well as operation strategies and collab-

orative decisions related to commercial buildings and EV charging stations, under uncer-

tain electricity demand. In the first-stage, energy network is designed in terms of the state

of components of network entities, while energy flow among network entities and inside

components of each entity is determined in each time period under each scenario in the

second-stage of the MILP model. The first-stage decision variables determine the state of

the following entities and components in energy network:

• the state of PGU and boiler in each commercial building

• the state of charging/discharging of commercial-grade battery/TES in each commer-

cial building

• the state of charging/discharging of batteries in each EV charging station

• the state of electricity transaction among commercial buildings, EV charging sta-

tions, and the PG

while the second-stage decision variables determine energy flow among the following

entities and components in each time period under each scenario:

• electricity transaction among PG, commercial buildings, and EV charging stations

• electricity generation by PGU in each commercial building

• electricity transaction from PGU to commercial-grade battery and building demand

• electricity shortage in each building/EV charging station
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• electricity storage in commercial-grade battery of each commercial building

• V2G electricity flow in each EV charging station

• fuel consumption by PGU/boiler in each commercial building

• thermal energy consumption by CC/HC and storage by TES in each commercial

building

• charging/discharging batteries in each EV charging station

• full-charged battery storage in each EV charging station

• RES electricity utilization rate by each commercial building/EV charging station

• electricity utilization for charging/discharging commercial-grade battery in each com-

mercial building

• HRS/boiler thermal energy flow to CC/HC/TES in each commercial building

In the following, the sets and indices, subsets, parameters, and decision variables are

briefly explained and followed by the mathematical formulation. Parameters are intro-

duced by lowercase and Greek letters, while variables are introduced by uppercase letters.

Additionally, the superscript of parameters and variables represent their brief descriptions,

while their subscripts represent their indices.

Sets and Indices:
B set of commercial buildings, indexed by b
I set of EV charging stations, indexed by i
T set of time periods, indexed by t
Ω set of scenarios, indexed by ω

93



www.manaraa.com

Subsets:
Ib subset of EV charging stations associated to commercial building b Ib ⊂ I
Bi subset of commercial buildings associated to EV charging station i Bi ⊂ B

For the sake of simplicity in parameters and decision variables definitions, commercial

buildings and EV charging stations are summarized as buildings and charging stations,

respectively.

Commercial Building Parameters:
ψpgu
b /ψbo

b PGU/boiler startup cost in building b
spgub /sbob PGU/boiler fuel consumption capacity in building b
ηpgu/ηbo PGU/boiler system efficiency
cf unit fuel price for PGU/boiler ($/gl)
apgu, bpgu PGU electricity generation efficiency
ab RES size in building b
dbtω total demand load in building b in time period t under scenario ω
πe
t percentage of total demand load for electric demand in time period t
πc
t percentage of total demand load for cooling demand in time period t
πh
t percentage of total demand load for heating demand in time period t
ηcb/ηdb commercial-grade battery charging/discharging efficiency
ηce/ηde TES charging/discharging efficiency
ηcc/ηhc CC/HC efficiency
bbpbt grid power available for building b in time period t
bbnbt maximum power flow to PG from building b in time period t
qb+/qb+ maximum/minimum percentage of commercial-grade battery charging

capacity
qb−/qb− maximum/minimum percentage of commercial-grade battery discharging

capacity
qe+/qe+ maximum/minimum percentage of TES charging capacity
qe−/qe− maximum/minimum percentage of TES discharging capacity
sbsb /stesb commercial-grade battery/TES capacity in building b
sbs+bt /sbs−bt maximum/minimum SoC of commercial-grade battery in building b in time

period t
stes+bt /stes−bt maximum/minimum SoC of TES in building b in time period t
sbsb0 initial SoC of commercial-grade battery in building b
stesb0 initial SoC of TES in building b
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EV Charging Station Parameters:
fit electric vehicle flow around charging station i in time period t
δtω percentage of electric vehicles charged at an EV charging station in time period t

under scenario ω
βt percentage of electric vehicles discharged at an EV charging station in time

period t

cv2gt unit V2G electricity energy cost in time period t ($/kWh)
cst unit storage cost per battery in time period t
ai RES size in charging station i
ui maximum number of available batteries in charging station i
bcpit grid power available for charging station i in time period t
bbnbt maximum power flow to PG from charging station i in time period t
λ average unit power required to charge each electric vehicle (kWh)
γ average unit power obtained from discharge each electric vehicle (kWh)
qini number of plug-ins available for charging batteries in charging station i
qouti number of plug-ins available for discharging batteries in charging station i

Other Parameters:
gpgt grid power available in time period t
gbpt grid power available for all buildings in time period t
gcpt grid power available for all charging stations in time period t
χbc
bit maximum power flow to charging station i from building b in time period t
χcb
ibt maximum power flow to building b from charging station i in time period t
c+t unit electricity purchasing price from PG in time period t ($/kWh)
c−t unit electricity selling price to PG in time period t ($/kWh)
ctt unit electricity transaction price among any pair of building & charging station

in time period t ($/kWh)
cust unit penalty cost for a power shortage in time period t ($/kWh)
γc carbon emission tax ($/ton)
νetc electricity-to-carbon conversion factor
νftc fuel-to-carbon conversion factor
µt solar radiation available in time period t
ηrr RES electricity generation efficiency
τ energy conversion factor (kWh to Btu)
ρω probability of scenario ω

In the following, the first- and second-stage decision variables of two-stage stochastic

MILP model divided in terms of commercial buildings and EV charging stations are briefly

explained. 95
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Commercial Building Decision Variables:
First-stage Decision Variables:
Zp

bt 1 if PGU state is on in building b in time period t; 0 otherwise
Zb

bt 1 if boiler state is on in building b in time period t; 0 otherwise
Se+
bt 1 if TES charging state is on in building b in time period t; 0 otherwise
Se−
bt 1 if TES discharging state is on in building b in time period t; 0 otherwise
Sb+
bt 1 if commercial-grade battery charging state is on in building b in time

period t; 0 otherwise
Sb−
bt 1 if commercial-grade battery discharging state is on at building b in time

period t; 0 otherwise
Y p+
bt 1 if electricity transaction state from PG is on in building b in on in time

period t; 0 otherwise
Y p−
bt 1 if electricity transaction state to PG is on in building b in on in time

period t; 0 otherwise
Y s+
bit 1 if electricity transaction state to charging station i is on in building b in time

period t; 0 otherwise

Second-stage Decision Variables:
H+

btω electricity flow from PG to building b in time period t under scenario ω
H−

btω electricity flow from building b to PG in time period t under scenario ω
Xpb

btω electricity flow from PGU to commercial-grade battery in building b
in time period t under scenario ω

Xgb
btω electricity flow from PG to commercial-grade battery in building b

in time period t under scenario ω
M+

bitω electricity flow from building b to charging station i in time period t under
scenario ω

Zbrr
btω RES generated electricity in building b in time period t under scenario ω

Xpgu
btω PGU generated electricity in building b in time period t under scenario ω

U bd
btω power shortage in building b in time period t under scenario ω

Bbd
btω PGU fuel consumed in building b in time period t under scenario ω

Bbo
btω boiler fuel consumed in building b in time period t under scenario ω

Xcb
btω electricity flow from building b to its commercial-grade battery in time period t

under scenario ω
Xdb

btω electricity flow to building b from its commercial-grade battery in time period t
under scenario ω

Xb
btω commercial-grade battery stored electricity in building b in time period t

under scenario ω
Xe

btω TES stored thermal energy in building b in time period t under scenario ω
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Xce
btω thermal energy charged in building b in time period t under scenario ω

Xde
btω thermal energy discharged in building b in time period t under scenario ω

Qcc
btω thermal energy flow from HRS and boiler to CC in building b in time period t

under scenario ω
Qsc

btω thermal energy flow from TES to CC in building b in time
period t under scenario ω

Qch
btω thermal energy flow from HRS and boiler to HC in building b in time period t

under scenario ω
Qsh

btω thermal energy flow from TES to HC in building b in time period t
under scenario ω

Qcs
btω thermal energy flow from HRS and boiler to TES in building b in time period t

under scenario ω

EV Charging Station Decision Variables:
First-stage Decision Variables:
Y c+
it 1 if battery charging state is on in charging station i in time period t;

0 otherwise
Y c−
it 1 if battery discharging state is on in charging station i in time period t;

0 otherwise
Y p+
it 1 if electricity transaction state from PG is on in charging station i in time period

t; 0 otherwise
Y p−
it 1 if electricity transaction state to PG is on in charging station i in time period t;

0 otherwise
Y s−
ibt 1 if electricity transaction state to building b is on in charging station i in time

period t; 0 otherwise

Second-stage Decision Variables:
G+

itω electricity flow from PG to charging station i in time period t under scenario ω
G−

itω electricity flow from charging station i to PG in time period t under scenario ω
Vitω electricity flow from V2G to charging station i in time period t ∈ T under

scenario ω
M−

ibtω electricity flow from charging station i to building b in time period t under
scenario ω

U cs
itω power shortage in charging station i in time period t under scenario ω

Zcrr
itω RES generated electricity in charging station i in time period t under scenario ω

Bitω swapped batteries in charging station i in time period t under scenario ω
Witω full-charged available batteries in charging station i in time period t under

scenario ω
Sitω charging batteries in charging station i in time period t under scenario ω

97



www.manaraa.com

Pitω discharging batteries in charging station i in time period t under scenario ω

Mathematical Model

The objective function minimizes energy flow costs through available energy resources to

satisfy the demands of network entities. The first-stage decisions made prior to realizing

any stochastic event (e.g., entity demand) correspond to the state of planning and schedul-

ing of network entities and components in each time period, while the second-stage deci-

sions include determining the energy generation resources under each scenario in terms of

the first-stage planning and scheduling made in each time period. The resource decisions

include the amount of power dispatched from energy generation resources in each time

period. The aim is to minimize the first-stage costs and the expected value of the random

second-stage costs across all possible entity demand scenarios. The objective function of

the two-stage stochastic MILP model [BEV] is proposed as follows:
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[BEV] Min
∑
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+
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(
λc+t Sitω + cstWitω

))
︸ ︷︷ ︸

Second-stage EV charging station battery cost

In [BEV], the first-stage objective function represents the cost associated with the PGU

and boiler startup, while the second-stage objective function represents the cost associated

with the PG, commercial buildings, and EV charging stations, i.e., the energy network cost.

Electricity flow to the PG from commercial buildings and EV charging stations determine

the PG cost, i.e., commercial buildings and EV charging stations benefit. Electricity flow

to a particular commercial building from the PG, related EV charging station(s), the RES,

commercial-grade battery, and the PGU is considered as the electricity cost of the com-

mercial building. In addition, thermal flow to the CC and HP from the HRS, boiler, and the
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TES determines the thermal energy cost of the commercial building. Also, the PGU and

boiler fuel consumption are considered as part of the commercial building cost. Electricity

flow to a particular EV charging station from the RES, V2G, and the PG is considered

as the electricity cost of the EV charging station. In addition, electricity flow to available

discharged batteries from the PG is considered as the electricity cost of the EV charging

station. The cost of electricity carbon emission and power shortage account for each com-

mercial building and EV charging station.

Constraints Associated with Commercial Buildings

Constraints for Electric Load Balance: Constraints (3.2) guarantee electricity sup-

ply for uncertain electric demand of each commercial building. As mentioned, electricity

resources include the RES, commercial-grade battery, the PGU, related EV charging sta-

tions, the PG, and an external resource(s) as power shortage compensation. Extra supplied

electricity is considered as power storage on commercial-grade battery as well as power

flow to the PG and related EV charging stations.

H+
btω + Zbrr

btω +Xpgu
btω + ηdbXdb

btω +
∑
i∈Ib

M−
ibtω + U bd

btω = πe
tdbtω +H−

btω +
Xcb

btω

ηcb
+ (3.1)∑

i∈Ib

M+
bitω ∀b ∈ B, t ∈ T , ω ∈ Ω
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Constraints (3.2) restrict electricity flow to an EV charging station from a related com-

mercial building. Constraints (3.3) indicate there is one-way electricity flow among a re-

lated pair of commercial building and EV charging station in a particular time period.

M+
bitω ≤ χbc

bitY
s+
bit ∀b ∈ B, i ∈ I, t ∈ T , ω ∈ Ω (3.2)

Y s+
bit + Y s−

ibt ≤ 1 ∀b ∈ B, i ∈ I, t ∈ T , (3.3)

Constraints for Thermal Energy Load Balance: Constraints (3.4) and (3.5) guaran-

tee cooling and heating supply for cooling and heating loads of each building based upon

thermal energy flow from the HRS, boiler, and the TES.

ηcc(Qcc
btω +Qsc

btω) = τπc
tdbtω ∀b ∈ B, t ∈ T , ω ∈ Ω (3.4)

ηhc(Qch
btω +Qsh

btω) = τπh
t dbtω ∀b ∈ B, t ∈ T , ω ∈ Ω (3.5)

Constraints for the RES: Constraints (3.6) restrict the utilization of renewable en-

ergy to the RES size, electricity generation efficiency, and the amount of solar radiation

absorbed by the RES.

Zbrr
btω ≤ abµtη

rr ∀b ∈ B, t ∈ T , ω ∈ Ω (3.6)

Constraints for Commercial-grade Battery: Constraints (3.7) through (3.13) deter-

mine the state of commercial-grade battery in each time period under each scenario. Con-

straints (3.7) indicate that a commercial-grade battery cannot be charged and discharged

simultaneously in a particular time period. Constraints (3.8) restrict the electricity storage

in a commercial-grade battery, while constraints (3.9) and (3.10) determine stored battery

electricity based on its previous storage along with the amount of charged or discharged
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battery electricity in terms of battery charging and discharging rates. Constraints (3.11)

and (3.12) restrict the amount of charged and discharged battery electricity. Finally, con-

straints (3.13) determine the amount of stored battery electricity in terms of electricity flow

obtained from the PGU, the PG, and its related building.

Sb+
bt + Sb−

bt ≤ 1 ∀b ∈ B, t ∈ T (3.7)

sbsb s
bs−
bt ≤ Xb

btω ≤ sbsb s
bs+
bt ∀b ∈ B, t ∈ T , ω ∈ Ω (3.8)

Xb
b1ω − sbsb sbsb0 =

Xcb
b1ω

ηcb
− Xdb

b1ω

ηdb
∀b ∈ B, ω ∈ Ω (3.9)

Xb
btω −Xb

bt−1ω =
Xcb

btω

ηcb
− Xdb

btω

ηdb
∀b ∈ B, t ≥ 2, t ∈ T , ω ∈ Ω (3.10)

sbsb q
b+Sb+

bt ≤
Xcb

btω

ηcb
≤ sbsb q

b+Sb+
bt ∀b ∈ B, t ∈ T , ω ∈ Ω (3.11)

sbsb q
b−Sb−

bt ≤
Xdb

btω

ηdb
≤ sbsb q

b−Sb−
bt ∀b ∈ B, t ∈ T , ω ∈ Ω (3.12)

Xb
btω = Xpb

btω +Xgb
btω +

Xcb
btω

ηcb
∀b ∈ B, t ∈ T , ω ∈ Ω (3.13)

Constraints for the PGU and Boiler: Constraints (3.14) and (3.15) restrict the PGU

and boiler fuel consumption with respect to their maximum capacity. Constraints (3.16)

restrict electricity flow to commercial-grade battery and corresponding building in terms of

the PGU fuel consumption and electricity generation efficiency. Constraints (3.17) restrict

thermal energy flow generated by the PGU and boiler to the CC, HC, and TES. It is worth

noting that extra thermal energy is stored at the TES.
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Bbd
btω ≤ spgub Zp

bt ∀b ∈ B, t ∈ T , ω ∈ Ω (3.14)

Bbo
btω ≤ sbob Z

b
bt ∀b ∈ B, t ∈ T , ω ∈ Ω (3.15)

Xpb
btω +Xpgu

btω = (Bbd
btω − bpguZ

p
bt)/a

pgu ∀b ∈ B, t ∈ T , ω ∈ Ω (3.16)

Qcs
btω +Qcc

btω +Qch
btω ≤ ηpguBbd

btω + ηboBbo
btω ∀b ∈ B, t ∈ T , ω ∈ Ω (3.17)

Constraints for the TES: Constraints (3.18) through (3.25) determine the TES state

in each time period under each scenario. Constraints (3.18) indicate that the TES cannot

be charged and discharged simultaneously in a particular time period. Constraints (3.19)

restrict the thermal energy storage in the TES, while constraints (3.20) and (3.21) determine

thermal energy storage based on its previous storage along with the amount of charged

or discharged TES thermal energy in terms of the TES charging and discharging rates.

Constraints (3.22) and (3.23) restrict the amount of charged and discharged TES thermal

energy. Constraints (3.24) indicate that the thermal energy flow provided by the TES to

the CC and HC is restricted by its discharging rate. Finally, constraints (3.25) indicate that

thermal energy flow from the HRS and boiler to the TES is restricted by its charging rate.

Se+
bt + Se−

bt ≤ 1 ∀b ∈ B, t ∈ T (3.18)

stesb stes−bt ≤ Xe
btω ≤ stesb stes+bt ∀b ∈ B, t ∈ T , ω ∈ Ω (3.19)

Xe
b1ω − stesb stesb0 =

Xce
b1ω

ηce
− Xde

b1ω

ηde
∀b ∈ B, ω ∈ Ω (3.20)
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Xe
btω −Xe

bt−1ω =
Xce

btω

ηce
− Xde

btω

ηde
∀b ∈ B, t ≥ 2, t ∈ T , ω ∈ Ω (3.21)

stesb qe+Se+
bt ≤

Xce
btω

ηce
≤ stesb qe+Se+

bt ∀b ∈ B, t ∈ T , ω ∈ Ω (3.22)

stesb qe−Se−
bt ≤

Xde
btω

ηde
≤ stesb qe−Se−

bt ∀b ∈ B, t ∈ T , ω ∈ Ω (3.23)

Qsc
btω +Qsh

btω =
Xde

btω

ηde
∀b ∈ B, t ∈ T , ω ∈ Ω (3.24)

Xce
btω

ηce
= Qcs

btω ∀b ∈ B, t ∈ T , ω ∈ Ω (3.25)

Constraints Associated with EV Charging Stations

Constraints for Electric Load Balance: Constraints (3.27) guarantee electricity sup-

ply for uncertain electric demand of each EV charging station. As mentioned, electricity

resources include the RES, full-charged batteries, related commercial buildings, the PG,

V2G, and an external resource(s) as power shortage compensation. Total electricity de-

mand in a given time period under a particular scenario is determined in terms of electric

vehicle flow, percentage of charged vehicles, and average unit power required to charge

each vehicle. Extra supplied electricity is considered as power flow to the PG and related

commercial buildings.

G+
itω + Zcrr

itω +
∑
b∈Bi

M+
bitω + Vitω + λBitω + U cs

itω = λδtωfit +
∑
b∈Bi

M−
ibtω (3.26)

+G−
itω ∀i ∈ I, t ∈ T , ω ∈ Ω

Constraints (3.27) restrict electricity flow to a commercial building from a related EV

charging station. Constraints (3.28) restricts electricity flow of V2G at an EV charging
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station. Total electricity supplied by V2G in a given time period under a particular scenario

is determined in terms of electric vehicle flow, percentage of discharged vehicles, and

average unit power required to discharge each vehicle.

M−
ibtω ≤ χcb

ibtY
s−
ibt ∀i ∈ I, b ∈ B, t ∈ T , ω ∈ Ω (3.27)

Vitω ≤ γβtfit ∀i ∈ I, t ∈ T , ω ∈ Ω (3.28)

Constraints for the RES: Constraints (3.29) restrict the utilization of renewable en-

ergy to the RES size, electricity generation efficiency, and the amount of solar radiation

absorbed by the RES.

Zcrr
itω ≤ aiµtη

rr ∀i ∈ I, t ∈ T , ω ∈ Ω (3.29)

Constraints for EV Charging Station Batteries: Constraints (3.30) through (3.37)

determine the state of utilized batteries in each time period under each scenario. Con-

straints (3.30) represents a restricted set of full-charged batteries at each EV charging sta-

tion at the beginning of the planning horizon. Constraints (3.31) indicate that batteries

cannot be charged and discharged simultaneously in a particular time period. Constraints

(3.32) and (3.33) restrict the number of charging and discharging batteries by the number

of plug-ins available at each EV charging station. Constraints (3.34) determine the number

of available full-charged batteries in terms of previous inventory along with the number

of charging/discharging batteries and battery demand. Constraints (3.35) indicate that no

battery is charged during the first hour of the planning horizon since constraints (3.30) guar-

antee full-charged batteries at the first time period. Constraints (3.36) restrict the number
105



www.manaraa.com

of charging batteries to the number of depleted batteries. Finally, constraints (3.37) restrict

the number of discharging batteries and battery demand to available full-charged batteries.

Wi,1,ω = ui ∀i ∈ I, ω ∈ Ω (3.30)

Y c+
it + Y c−

it ≤ 1 ∀i ∈ I, t ∈ T (3.31)

Sitω ≤ qini Y
c+
it ∀i ∈ I, t ∈ T , ω ∈ Ω (3.32)

Pitω ≤ qouti Y c−
it ∀i ∈ I, t ∈ T , ω ∈ Ω (3.33)

Witω −Bitω − Pitω + Sitω = Wi,t+1,ω ∀i ∈ I, t ∈ T \|T |, ω ∈ Ω (3.34)

Si,1,ω = 0 ∀i ∈ I, ω ∈ Ω (3.35)

Sitω ≤ ui −Witω ∀i ∈ I, t ≥ 2, t ∈ T , ω ∈ Ω (3.36)

Bitω + Pitω ≤ Witω ∀i ∈ I, t ∈ T , ω ∈ Ω (3.37)

Constraints Associated with Power Grid

Constraints (3.38) through (3.46) determine the PG state in each time period under each

scenario. Constraints (3.38) restrict the available grid power utilized for all commercial

buildings and EV charging stations, while constraints (3.39) and (3.40) restrict the avail-

able grid power utilized only for all commercial buildings and EV charging stations, re-

spectively. Constraints (3.41) indicate that there is one-way electricity flow among the PG

and a commercial building in each time period, while constraints (3.42) and (3.43) restrict

electricity flow among the PG and a commercial building under each scenario. Likewise,

constraints (3.44) indicate that there is one-way electricity flow among the PG and an EV
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charging station in each time period, while constraints (3.45) and (3.46) restrict electricity

flow among the PG and an EV charging station under each scenario.

∑
i∈I

G+
itω +

∑
b∈B

H+
btω ≤ gpgt ∀t ∈ T , ω ∈ Ω (3.38)∑

b∈B

H+
btω ≤ gbpt ∀t ∈ T , ω ∈ Ω (3.39)∑

i∈I

G+
itω ≤ gcpt ∀t ∈ T , ω ∈ Ω (3.40)

Y p+
bt + Y p−

bt ≤ 1 ∀b ∈ B, t ∈ T (3.41)

H+
btω ≤ bbpbtY

p+
bt ∀b ∈ B, t ∈ T , ω ∈ Ω (3.42)

H−
btω ≤ bbnbt Y

p−
bt ∀b ∈ B, t ∈ T , ω ∈ Ω (3.43)

Y p+
it + Y p−

it ≤ 1 ∀i ∈ I, t ∈ T (3.44)

G+
itω ≤ bcpit Y

p+
it ∀i ∈ I, t ∈ T , ω ∈ Ω (3.45)

G−
itω ≤ bcnit Y

p−
it ∀i ∈ I, t ∈ T , ω ∈ Ω (3.46)

Binary and Non-negativity Constraints

Constraints (3.47) define binary restriction for the first-stage decision variables. Likewise,

constraints (3.48) and (3.49) define standard integrality and non-negativity constraints for

the second-stage decision variables, respectively.
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Zp
bt, Z

b
bt, S

e+
bt , S

e−
bt , S

b+
bt , S

b−
bt , Y

p+
bt , Y

p−
bt ,

Y c+
it , Y

c−
it , Y

p+
it , Y p−

it , Y s+
bit , Y

s−
ibt , ∈ {0, 1}

∀b ∈ B, i ∈ I, t ∈ T (3.47)

Witω, Bitω, Sitω, Pitω ∈ Z≥0

∀i ∈ I, t ∈ T , ω ∈ Ω (3.48)

G+
itω, G

−
itω, H

+
btω, H

−
btω,M

+
bitω,M

−
ibtω, Vitω, Z

crr
itω , Z

brr
btω , X

pgu
btω ,

Bbd
btω, B

b0
btω, X

cb
btω, X

db
btω, X

pb
btω, X

gb
btω, X

b
btω, X

ce
btω, X

de
btω,

Xe
btω, U

bd
btω, U

cs
itω, Q

cc
btω, Q

sc
btω, Q

ch
btω, Q

sh
btω, Q

cs
btω ≥ 0

∀i ∈ I, b ∈ B, t ∈ T , ω ∈ Ω (3.49)

3.2.4 Valid Inequalities

Regarding valid inequalities, we attempt to accelerate the solution of the problem using

both model [BEV] and an optimization algorithm proposed in Section 3.3. Valid inequal-

ities are able to enhance a linear programming relaxation of the problem. Readers are

referred to the studies [26] discussed in detail about valid inequalities. Inspired from those

studies, the following valid inequalities are developed.

• A commercial-grade battery at building b is not capable of discharging electricity

energy in a given time period t if no charging is made up to time period (t− 1).

∑
j≤(t−1)

Se+
bj ≥ Se−

bt ∀b ∈ B, t ∈ T (3.50)
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• The TES at building b is not capable of discharging thermal energy in a given time

period t if no charging is made up to time period (t− 1).

∑
j≤(t−1)

Sb+
bj ≥ Sb−

bt ∀b ∈ B, t ∈ T (3.51)

• A battery(es) at EV charging station b is not capable of charging electricity energy

in a given time period t if no discharging is made up to time period (t− 1).

∑
j≤(t−1)

Y c−
ij ≥ Y c+

it ∀i ∈ I, t ∈ T (3.52)

• There is no thermal energy flow to the TES, HC, and CC if the PGU and/or boiler

state is not switched to on at building b in a given time period t under a particular

scenario ω.

Qcs
btω +Qcc

btω +Qch
btω ≤ ηpguspgub Zp

bt + ηbosbob Z
b
bt ∀b ∈ B, t ∈ T , ω ∈ Ω (3.53)

3.3 Solution Methodology

Since model [BEV] contains binary decision variables in the first-stage as well as in-

teger and continues decision variables in the second-stage, it is very challenging to solve

using commercial solvers such as CPLEX. In other words, model [BEV] is not capable of

obtaining optimal solutions for industry-size problems and, consequently, there is a need to

propose an optimization algorithm to obtain the optimal/near optimal solutions in reason-

able computational times. This being the case, an efficient Sample Average Approximation

(SAA) method is proposed to generate high-quality solutions for model [BEV] effectively.

The performance of the SAA method is also enhanced by considering proposed valid in-

equalities.
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3.3.1 Sample Average Approximation

Electricity and thermal demands of commercial buildings, dbtω, differ significantly due

to different timetable of working hours, usage intensity of equipment and lighting facili-

ties, and air conditioning system data. Likewise, the percentage of electric vehicles charged

in EV charging stations, δtω, differs significantly due to variable electric vehicle flows at

EV charging stations. Therefore, an extremely large number of scenarios is required to

investigate variations in demand. Since the research problem is NP-hard, computational

time increases significantly when a large set of scenarios is considered. To remedy this

problem, the SAA method is proposed so that the expected energy network cost of the

stochastic problem is approximated by a corresponding sample average function. The

problem is solved by deterministic optimization techniques under the sample average ap-

proximation. The procedure is repeated with different samples until a stopping criterion

(a pre-determined optimality gap) is satisfied. The SAA method has been successfully im-

plemented for solving large-scale supply chain network flow related problems ([105], [76],

[99], and [120]). In relation to the convergence properties and statistical performance of

the SAA method, readers are referred to Kleywegt et al. [62], Mak et al. [75], as well as

Norkin et al. [85] and [86].

Electricity demand of commercial buildings, dbtω, follows a normal distribution for

each commercial building b at time period t. Likewise, the percentage of electric vehicles

charged in EV charging stations, δtω, follows a normal distribution for each time period

t. The SAA method generates set N of random samples n with realizations of uncertain
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parameters (n ∈ N and |N | < |Ω|) to approximate the objective function value of the

second-stage problem as follows:

E[Q(Z, ω)] :=
1

N

∑
n∈N

Q(Z, ωn)

where Q(Z, ωn) is a solution of the second-stage problem for a given value of Z under

scenario ωn. Problem [BEV] is now approximated by the following SAA problem:

Minimize

{
ZmN =

∑
t∈T

∑
b∈B

(
ψpgu
b Zp

bt + ψbo
b Z

b
bt

)
+

1

N

∑
n∈N

Q(Z, ωn)

}

As the sample size increases, the optimal solution approximated by the above equation

converges with probability one to an optimal solution of the original problem [BEV] [62].

By solving the SAA problem within an absolute optimality gap δ ≥ 0, the sample size |N |

is estimated to guarantee an ϵ-optimal solution to the true problem with probability at least

equal to (1− α) as follows:

|N | ≥ 3σ2
max

(ϵ− δ)2

(
|B||T |(log2)− logα

)

where ϵ > δ, α ∈ (0, 1), and σ2
max is a maximal variance of certain function differences

[62]. It is worth noting that choosing sample size |N | is a trade-off between the solu-

tion quality and required computational time. The above equation provides a conservative

sample size estimation for practical applications. In each iteration of the SAA method,

valid statistical lower and upper bounds are provided for the original problem [BEV] and
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the process terminates when the gap between aforementioned bounds falls below a pre-

determined threshold value. The following steps briefly summarize the SAA method to

solve problem [BEV].

Step 1: Generate set M of independent commercial building load scenarios, each

of size |N |, i.e., {dbtωωω1
m
, dbtωωω2

m
, ..., d

btωωω
|N|
m
}, ∀m ∈ M, b ∈ B, t ∈ T . Likewise,

generate set M of independent percentage scenarios of electric vehicles charged in

EV charging station, each of size |N |, i.e., {δtωωω1
m
, δtωωω2

m
, ..., δ

tωωω
|N|
m
}, ∀m ∈ M, t ∈ T .

Then, solve the corresponding SAA for each generated sample consisting of |N |

realizations of independently and identically distributed (i.i.d.) random scenarios.

The optimal objective function value and the optimal solution are denoted by ZmN

and ẐM , respectively. The optimal objective function value of the mth replication is

obtained as follows:

ZmN =
∑
b∈B

∑
t∈T

(
ψpgu
b Zp

bt + ψbo
b Z

b
bt

)
+

1

N

∑
n∈N

Q(Z, ωn)

Step 2: Compute the average of all optimal objective function values obtained from

the SAA problems, Z̄MN as follows:

Z̄MN =
1

|M |
∑
m∈M

ZmN
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where, Z̄MN provides a statistical lower bound on the optimal objective function value

for the original problem [BEV] [86]. Since Z1N , Z
2
N , ..., Z

M
N generated samples are

independent, the corresponding variance of Z̄MN , i.e., σ2
Z̄MN

, is given by:

σ2
Z̄MN

=
1

(|M | − 1)(|M |)
∑
m∈M

(
ZMN − Z̄MN

)2

Step 3: Generate set N ′ including larger sample size (|N ′| ≫ |N |) to compute

the estimated optimal objective solution of the SAA method [62]. This estimator,

which is the upper bound of the optimal solution on the generated sample size |N ′|,

is obtained by one of the solutions of ẐM as follows:

ZN ′(ẐM) =
∑
b∈B

∑
t∈T

(
ψpgu
b Zp

bt + ψbo
b Z

b
bt

)
+

1

N ′

∑
n∈N ′

Q(Z, ωn)

In each iteration, the estimator upper bound ZN ′(ẐM) is updated. The variance of

this estimator upper bound is calculated as follows:

σ2
N ′(ẐM) =

1

(|N ′ − 1|)(|N ′|)
∑
n∈N ′

{∑
b∈B

∑
t∈T

(
ψpgu
b Zp

bt + ψbo
b Z

b
bt

)
+Q(ẐM , ω

n)−

ZN ′(ẐM)
}2

Step 4: Compute the SAA gap, Gap(N,N ′), and the variance of this gap, σ2
Gap(N,N′)

,

using the estimators determined in Steps 2 and 3.
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Gap(N,N ′)(Z̃) = ZN ′(ẐM)− Z̄MN

σ2
Gap(N,N′)

= σ2
N ′(ẐM) + σ2

Z̄MN

The confidence interval for the optimality gap is then calculated as follows:

ZN ′(ẐM)− Z̄MN + zα

{
σ2
N ′(ẐM) + σ2

Z̄MN

}1/2

with zα:= Φ−1(1 − α), where Φ(z) is the cumulative distribution function of the

standard normal distribution.

Step 5: Define the best solution among the solutions of ẐM(∀m ∈M) that represents

the lowest upper bound ZN ′(ẐM).

3.4 Computational Study and Managerial Insights

This section focuses on solving model [BEV] using the SAA method to draw man-

agerial insights derived from a real life case study. This section is composed of three

sub-sections. First, a brief description of the data used to generate problem instances along

with scenario generation are provided. Second, the efficiency and effectiveness of the

MILP model and proposed SAA method are evaluated for the energy network problem

with respect to valid inequalities. Finally, a case study, using the city of San Francisco,

explores aspects of energy management that makes use of the connections between limited

energy resources to satisfy network demand. In addition, the study analyzes the impact

of demand variability, power transaction limit, power grid disruption, and the renewable
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resource size on the overall energy network design and cost. Managerial insights are de-

rived from this case study in the form of perspective and understanding. All numerical

experiments are coded in GAMS 24.2.1 [39] on a desktop computer equipped with an Intel

Core i7 - 3.50 GHz processor with 32 GB of RAM. The optimization solver used is ILOG

CPLEX 12.6.

3.4.1 Data Description

Since San Francisco has a strong-growing electric vehicle population, it was chosen

as a testing ground to visualize and validate the modeling results. In addition, it has a

reputation as being one of the nation’s most environmentally conscious cities. Several

factors contribute to this status, not the least of which San Francisco also happens to be

one of the wealthiest cities in the country. Furthermore, San Francisco offers some of the

most electric vehicle-friendly incentives for EV owners at both the state and local levels.

For example, under the Bay Area Air Quality Management District’s EV Rebate Program

public agencies can receive an additional $2,500 toward the purchase of an electric vehicle

and $1,000 for a plug-in hybrid electric vehicle.

Surplus electricity from one or more commercial buildings might be sent to a nearby

EV charging station(s) and an EV charging station might share its surplus electricity with

nearby commercial buildings, as well for higher energy efficiency. This being the case,

within San Francisco, 11 fast EV charging stations (|I| = 11) and 43 commercial buildings

(|B| = 43) located near those charging stations were selected for the real life case study

[93]. The goal is to determine the impact of parameter changes on the overall energy
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network cost. Figure 3.3 demonstrates the distribution of fast EV charging station locations

along with their nearby commercial buildings.

Figure 3.3: EV Charging station distribution with nearby commercial buildings in San

Francisco

Information from a 2010 report on uses of solar radiation in San Francisco is used as

input for determining available electricity obtained from solar panels during a day [83]. In

addition, the size of the solar panels used for commercial buildings (ab) and EV charging

stations (ai) are assumed to be 100 m2 and 75 m2, respectively. Commercial and industrial

time-of-use (TOU) rates are adopted from [104] to determine unit electricity transaction

price among network entities (c+t , c−t , and ctt). Based on the TOU rate, 1:00 P.M. through

8:00 P.M. are the peak hours of electricity usage where the electricity transaction price

is high, while 5:00 A.M. through 12:00 P.M. along with 9:00 P.M. through 11:00 P.M.

are the sub-peak hours of electricity usage where the electricity transaction price is lower
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compared to peak hours. All other hours throughout a day are off-peak hours with the

lowest price. Figure 3.4 represents different electricity usage hours. The hourly electricity

pricing plan for V2G (cv2gt ) is obtained from [91].

Figure 3.4: Electricity usage hours

The hourly projected commercial building demands (dbtω) are determined in terms of

the TOU rate, while the hourly projected flow of electric vehicles around each charging

station (fit) is determined based on the number of electric vehicles that were available

in San Francisco in 2016 [92]. Other factors such as population density along with the

number of hospitals and colleges located near major roads are considered to project EV

flow (fit). Then, in terms of electric vehicle flow around EV charging stations, in this

study the percentage of electric vehicles charged in a particular time period (δtω) is set

to 40% for the base case, while the discharging rate (βt) is set to 5%. The average unit

power requirement for charging each car (λ) is set to 25.7 kWh. Similarly, average unit

power discharged from each car (γ) is also set to 25.7 kWh. The daily fuel consumption

capacity of the PGU is set to 200 gl. The grid power available for each commercial building

(bbpbt ) and EV charging station (bcpit ) is set to 200 kWh and 250 kWh, respectively. The
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commercial-grade battery capacity (sbsb ) is set to 100 kW. The maximum power transaction

between related commercial buildings and EV charging stations (i.e., χbc
bit and χcb

ibt) are

set to 100 kWh. For simplification purposes, the minimum and maximum percentages of

SoC/charging capacity/discharging capacity of a commercial-grade battery/TES are set to

20% and 90%, respectively, while their charging and discharging efficiencies (η) are both

set to 90%. Unit penalty cost of power shortage (cust ) is determined in terms of the unit

production power of other resources, i.e., cust > max{c+t , ctt, cf}. Finally, the unit storage

cost of a battery in an EV charging station (cst ) is set to 0.02 $/hr.

3.4.2 Computational Performance of the Proposed Algorithms

The efficiency and effectiveness of the SAA method proposed in Section 3.3 is eval-

uated by solving model [BEV]. To simplify the definition of the proposed solution ap-

proaches and obtained results, the following notations are provided.

• [CPLEX]: Model [BEV] solved by CPLEX

• [CPLEX-VI]: Model [BEV] accompanied by valid inequalities and solved by CPLEX

• [SAA]: The SAA method

• [SAA-VI]: The SAA method accompanied by valid inequalities for samples with

small-size scenario

In relation to the research problem, there are no benchmark instances available in the

literature. Hence, a new set of problem instances are generated with respect to a real

life case study and problem size, impacting the computational time of [CPLEX-VI]. For

the purpose of comparison, three sets of problem instances have been generated: small-,
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medium-, and large-sized instances, where the case study proposed for San Francisco is

considered a medium-size problem. The ratio of the number of commercial buildings to

the number of EV charging stations is set to four for all problem sizes, i.e., |B|
|I| = 4. In other

words, each commercial building is connected to four EV charging stations on average. So,

for example in the case of a small size problem ratios of 8 buildings to 2 charging stations,

12 to 3, 16 to 4, 20 to 5 and 24 to 6 are used for the various instances in that set. In addition,

the time period spans used are 12 and 24 hours (around one day) for small-size instances,

24 and 72 hours (1 and 3 days) for medium-size instances, and 168 and 360 hours (7 and

15 days) for large-size instances. Table 3.1 represents generated instances for each set of

problem sizes in terms of |I|, |B|, and |T |, where the deterministic equivalent for model

[BEV] is indicated based on the number of variables and constraints for each generated

case.

Table 3.1: Problem size of the deterministic equivalent of the model based on the number
of variables and constraints

Sizes Instances |I| |B| |T | Variables Total
Binary Integer Continuous Total constraints

Small

1 2 8 12 480 96 2,520 3,096 5,754
2 2 8 24 960 192 5,040 6,192 11,526
3 3 12 12 720 144 4,068 4,932 8,901
4 3 12 24 1,440 288 8,136 9,864 17,829
5 4 16 12 960 192 5,808 6,960 12,240
6 4 16 24 1,920 384 11,616 13,920 24,516
7 5 20 12 1,200 240 7,740 9,180 15,771
8 5 20 24 2,400 480 15,480 18,360 31,587
9 6 24 12 1,440 288 9,864 11,592 19,494
10 6 24 24 2,880 576 19,728 23,184 39,042

Medium

1 8 32 24 3,840 768 29,376 33,984 55,104
2 8 32 72 11,520 2,304 88,128 101,952 165,456
3 9 36 24 4,320 864 34,776 39,960 63,711
4 9 36 72 12,960 2,592 104,328 119,880 191,295
5 10 40 24 4,800 960 40,560 46,320 72,702
6 10 40 72 14,400 2,880 121,680 138,960 218,286
7 11 43 24 5,160 1,056 45,696 51,912 80,351
8 11 43 72 15,480 3,168 137,088 155,736 241,247
9 12 48 24 5,760 1,152 53,280 60,192 91,836
10 12 48 72 17,280 3,456 159,840 180,576 275,724

Large

1 15 60 168 50,400 10,080 526,680 587,160 864,729
2 15 60 360 108,000 21,600 1,128,600 1,258,200 1,853,145
3 17 68 168 57,120 11,424 642,600 711,144 1,025,655
4 17 68 360 122,400 24,480 1,377,000 1,523,880 2,198,007
5 20 80 168 67,200 13,440 836,640 917,280 1,287,204
6 20 80 360 144,000 28,800 1,792,800 1,965,600 2,758,500
7 22 88 168 73,920 14,784 979,440 1,068,144 1,475,010
8 22 88 360 158,400 31,680 2,098,800 2,288,880 3,160,962
9 25 100 168 84,000 16,800 1,213,800 1,314,600 1,776,879
10 25 100 360 180,000 36,000 2,601,000 2,817,000 3,807,855
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A proposed solution approach is evaluated based upon the best lower bound obtained

from all solution approaches. In other words, the percentage deviation (gap) between the

upper bound and lower bound of the ith solution approach, UBi and LBi, respectively, is

determined as ∆fi(%) = (UBi−LBBest

LBBest
)× 100% ∀i ∈ S , where S = {[CPLEX],

[CPLEX-VI], [SAA], [SAA-VI]}. LBBest stands for the best lower bound obtained from

all solution approaches, i.e., LBBest = Max{LBi} ∀i ∈ S . All solution approaches are

terminated when at least one of the following criteria is satisfied: (a) the gap falls below a

threshold value ε, i.e., ∆fi(%) ≤ ε or (b) the maximum computational time limit, CTmax,

is reached. In this study, the stopping criteria are set as ε = 1% and CTmax = 3600 s.

Table 3.2 shows the comparative results obtained for the proposed solution approaches

in terms of the gap and computational time. Scenario size is set to N = 1, 000 for

[CPLEX] and [CPLEX-VI], while for [SAA] and [SAA-VI], sizes of N = 20 and

N ′ = 1, 000 are used for small- and large-size scenarios, respectively. The boldface values

under the T (s) columns indicate the best computational time obtained across the proposed

solution approaches, while the boldface values under the ∆f(%) column indicate the best

gap developed by solution approaches when T (s) = CTmax. The following results are

obtained from Table 3.2 under restricted computational time and pre-determined gap:

• Results indicate that all proposed solution approaches outperform [CPLEX], partic-

ularly as the problem size increases.

• Although [CPLEX] is able to solve all small-size instances optimally, its perfor-

mance is increase by incorporating valid inequalities to model [BEV], i.e., [CPLEX-

VI], in relation to medium-size instances.
120



www.manaraa.com

• [CPLEX-VI] reduces the overall gap reported by [CPLEX].

• [SAA] improves the overall performance of [CPLEX-VI] by solving all small- and

medium-size instances optimally.

• [SAA-VI] is capable of solving all problems optimally, except three large-size in-

stances. The gap reported by [SAA-VI] is 1
5

of the gap reported by [SAA] on aver-

age. This gap is improved significantly in relation to large-size instances.

• [SAA-VI] reduces computational time in 50% on average compared to [SAA].

• [SAA-VI] outperforms all proposed solution approaches and presents high-quality

solutions with respect to both required computational time and the developed gap,

particularly for large-size instances.

Table 3.2: Comparison of the results obtained from [CPLEX], [CPLEX-VI], [SAA], and
[SAA-VI]

Size [CPLEX] [CPLEX-VI] [SAA] [SAA-VI]
Case ∆f (%) T (s) ∆f (%) T (s) ∆f (%) T (s) ∆f (%) T (s)

Small

1 0.09 6.63 0.16 7.04 0.08 8.61 0.11 8.91
2 0.13 11.24 0.17 13.47 0.14 15.66 0.19 13.87
3 0.14 9.57 0.15 8.25 0.23 11.47 0.34 12.62
4 0.23 19.79 0.33 12.98 0.29 22.64 0.27 20.74
5 0.16 11.78 0..64 14.82 0.18 16.85 0.42 14.97
6 0.28 27.02 0.49 19.88 0.44 32.87 0.16 29.14
7 0.34 17.64 0.67 10.24 0.36 19.64 0.27 18.35
8 0.46 38.06 0.34 24.38 0.28 42.05 0.25 33.64
9 0.35 22.09 0.75 15.09 0.74 25.67 0.55 23.78

10 0.24 49.87 0.41 38.54 0.68 30.41 0.28 35.64
Average 0.24 21.37 0.39 16.47 0.34 22.59 0.28 21.17

Medium

1 0.51 865.06 0.38 425.08 0.25 171.73 0.77 188.69
2 12.95 CTmax 7.63 CTmax 0.76 1,336.87 0.39 589.67
3 0.85 2,912.59 0.73 3,152.67 0.37 1,187.63 0.14 468.97
4 14.25 CTmax 9.49 CTmax 0.84 1,763.87 0.64 785.41
5 7.12 CTmax 4.97 CTmax 0.53 1,587.09 0.26 597.28
6 15.63 CTmax 10.23 CTmax 0.84 2,364.43 0.72 987.68
7 8.02 CTmax 5.34 CTmax 0.65 1,873.04 0.38 653.41
8 16.52 CTmax 11.41 CTmax 0.84 3,174.58 0.12 1,009.34
9 9.12 CTmax 6.58 CTmax 0.58 2,141.78 0.62 763.14

10 18.71 CTmax 12.54 CTmax 0.46 3,374.21 0.44 1,143.81
Average 10.37 3,257.77 6.93 3,237.78 0.61 1,897.52 0.45 718.74

Large

1 22.88 CTmax 17.54 CTmax 1.89 CTmax 0.63 1,244.35
2 OM - OM - 2.24 CTmax 0.41 1,465.38
3 OM - OM - 3.14 CTmax 0.83 1,301.41
4 OM - OM - 5.73 CTmax 0.67 2,354.25
5 OM - OM - 2.12 CTmax 0.29 1,423.12
6 OM - OM - 8.67 CTmax 1.09 CTmax

7 OM - OM - 3.54 CTmax 0.38 1,478.63
8 OM - OM - 15.96 CTmax 1.27 CTmax

9 OM - OM - 4.63 CTmax 0.89 1,396.54
10 OM - OM - 18.54 CTmax 1.64 CTmax

Average 22.88 CTmax 17.54 CTmax 6.65 CTmax 0.81 2,146.37
Total average 6.14 1,732.92 4.52 1,721.07 2.53 1,840.04 0.51 962.09
CTmax stands for maximum computational time, i.e., 3600(s).
OM stands for out of memory.
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A hypothesis test is applied to compare the median gap generated by [SAA] with that

by [SAA-VI]. The result of implementing the Wilcox signed-rank test for H0 : µd = 0

vs. Ha : µd ̸= 0 indicates that there is a statistically significant difference between the

performances of the two aforementioned solution approaches (Pvalue < 0.05), where µd

represents the difference between the gap generated by [SAA] and [SAA-VI]. Thus, the

median gap generated by [SAA-VI] is significantly less from the median gap generated by

[SAA], endorsing the fact that [SAA-VI] is superior to [SAA].

3.4.3 Experimental Results

How to best utilize power resources during each time period of a day determines energy

network design. For a given set of assumptions, a sensitivity analysis is performed to

determine how different values of demand variability, power transaction limit, power grid

disruption, and the renewable resource size impact overall energy network cost.

All sensitivity analyses are performed with respect to a real life case study developed

for San Francisco (base case study). Figure 3.5(a) and 3.5(b) show the average utilization

of the various power sources used to satisfy electricity demand of a commercial building

and EV charging station, respectively, while Figure 3.5(c) shows the number of batteries

in each of the various states of swapped, charged, charging, and discharging.

Figures 3.5(a) and 3.5(b) clearly supports that the electricity demand of commercial

buildings and EV charging stations is primarily satisfied through the PG during the period

of 5:00 P.M. to 8:00 A.M.+ (almost at the end of peak hours, whole off-peak hours, and

at the beginning of the first sub-peak hours). This is due to the low electricity transac-
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Figure 3.5: Average resource power utilization in a typical day for a building and charging

station in the base case study
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tion price during this period. In addition, electricity flow to commercial buildings and EV

charging stations from the PG reaches its minimum, G+
itω ≃ 0 and H+

itω ≃ 0, in the period

of 11:00 A.M. to 2:00 P.M. due to the high electricity transaction price during these times.

Furthermore, other power sources, particularly RES, have a significant impact on the re-

ducing the demand on the PG during the mid-day time period and, consequently, reducing

overall network cost. It is worth noting that a flow of surplus electricity between EV charg-

ing stations and commercial buildings shifts electricity demand with buildings providing

energy to charging stations during peak hours with the reverse occurring during off-peak

hours. Figure 3.5(c) supports that more batteries are charged and stored in the middle time

periods at EV charging stations. Also, the electricity stored in the batteries at a station is

discharged to the PG after fulfilling the electricity demand at the station. In the following

sections, the impact of critical parameters on the energy network cost is determined.

3.4.3.1 Impact of Demand Variability

We first investigate the impact of demand variability on utilization of diversified power

resources and, consequently, energy network cost. Let dbt and σ2
bt be the mean and variance

of demand related to commercial building b at time period t, respectively. Three different

demand variation levels are considered: low (σ2
bt = 5%dbt), medium (σ2

bt = 15%dbt -

set as base case), and high (σ2
bt = 50%dbt). Let δt and σ2

b be the mean and variance of

the percentage of charged electric vehicles at time period t, respectively. Likewise, three

different variation levels are generated: low (σ2
t = 5%δt), medium (σ2

t = 15%δt set as

base case), and high (σ2
t = 50%δt). We then implement Monte Carlo simulation tech-
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niques to generate the scenarios for those different variation levels. Figures 3.6a and 3.6b

represent electricity flow to the PG from commercial buildings and EV charging stations,

respectively, at low, medium (base case study), and high demand variation levels.

As shown in Figure 3.6a, as demand variability is reduced, electricity flow from a com-

mercial building to the PG increases. The reason lies in the fact that demand fluctuations

in electricity and thermal energy are controlled via a commercial grade battery system,

and the TES, respectively. In other words, a high level of demand variation leads to more

storage in the commercial-grade battery and TES, along with less electricity flow to the

PG and associated EV charging stations. Similarly, low demand variation level leads to

less storage in the buffers and more electricity flow to the PG and associated EV charging

stations. This indicates that demand variation has a significant impact on electricity and

thermal energy management in a building.

Likewise, high demand fluctuation leads to more electricity storage as stored batteries

at a charging station, which is shown by Figure 3.6b. In this regard, Figures 3.7a and 3.7b

represent the number of charging and discharging batteries at each demand variation level,

respectively. As shown in Figure 3.7, the number of charging batteries has a direct relation-

ship with demand variation levels, while the number of discharged batteries has an indirect

relationship with demand variation levels. The reason lies in the fact that the number of

charged, discharged, exchanged batteries and, consequently, the number of stored batteries

at an EV charging station changes based on the variation in the percentage of electric ve-

hicles that need to be charged, i.e., demand fluctuation. Therefore, a high level of demand

variation leads to less electricity flow to the PG and related commercial buildings and more
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Figure 3.6: Impact of buildings and charging stations demand variability on electricity flow

to the PG

stored batteries at an EV charging station, while low demand variation leads to more elec-

tricity flow to the PG and related commercial buildings and less inventory of fully-charged

batteries.

In summary, the level of demand variation has a direct relationship with the electric-

ity and thermal energy that are stored in the buffers of the commercial buildings and the

number of fully-charged batteries stored at EV charging stations. In addition, the level of

demand variation has an indirect relationship with power transaction between commercial

buildings and EV charging stations, as well as electricity flow to the PG.

3.4.3.2 Impact of Power Transaction Limit

This set of experiments studies the impact of power transaction, between related com-

mercial buildings and EV charging stations, i.e., χbc
bit and χcb

ibt, has on overall energy net-
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Figure 3.7: Impact of charging station demand variability on charging and discharging

electric vehicle batteries

work cost. To study this effect, the maximum amount of power transferred is increased

and decreased by both 10% and 20%. Table 3.3 shows the operation costs of commercial

buildings, EV charging stations, and overall network costs based on changes in the power

transaction limit. As shown in Table 3.3, it is clear that there is an indirect relationship

between the power transaction limit and network cost. In other words, the overall energy

network cost is reduced more by increasing the upper bound of power transaction.

To realize more the impact of power transaction between related commercial buildings

and EV charging stations on the overall energy network cost, power transaction is disre-

garded by setting χbc
bit = 0 & χcb

ibt = 0 ∀i ∈ I, b ∈ B, t ∈ T . Regarding power transaction,

i.e., χbc
bit > 0 & χcb

ibt > 0, network cost is decreased by 14.24% due to surplus electricity

flow between the commercial buildings and EV charging stations and, consequently, elec-
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tricity demand is shifted from peak hours to off-peak hours. Overall, we observe that the

power transaction limit has a considerable effect on the overall energy network cost.

Table 3.3: System performance under different amount of electricity transaction between
building and CS

Percent change in χbc
bit/χ

cb
ibt

Costs Cost saving (%)Buildings Charging stations Overall network costs
-20% 15,813.12 1,095.73 16,908.85 -6.88
-10% 15,326.35 1,023.51 16,349.86 -3.35

0%(Base case) 14,878.49 941.54 15,820.03 0.00
10% 14,464.63 873.78 15,338.41 3.04
20% 13,941.09 816.21 14,757.30 6.72

No power transaction 16,896.68 1,176.43 18,073.11 -14.24

3.4.3.3 Impact of Power Grid disruption

Transmission line failure might occur due to excessive power flow between the PG and

a commercial building or EV charging station, or by a man-made/natural disaster. While

the occurrence of a disaster is not under our control, excess power flow can be controlled

by limiting power flow over consecutive time periods. A power shortage might occur in

an energy network due to a disruption and, consequently, a penalty cost is imposed on

the network due to either there being unmet demand or demand satisfied by an external

source(s). Since the PG has an important effect on the utilization of the different power

resources, the impact of a power grid disruption on energy network cost is investigated. A

commercial building or EV charging station is selected randomly and its connection with

the PG is terminated for several consecutive time periods. The disruption time period is set

to the last three peak hours, i.e., 5:00 P.M. to 8:00 P.M., when more power flow exists on

the transmission lines of the PG.
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Figure 3.8 shows the utilization of power resources in relation to a particular com-

mercial building, under both normal (Figure 3.8a) and disruption 3.8b) conditions. Figure

3.8b demonstrates that part of power shortage created by a power grid disruption (during

the last three peak hours) is satisfied by other power resources including the PGU and

commercial-grid battery with respect to their capacities. There is no significant change in

the RES utilization since it is utilized near to its maximum capacity under normal condi-

tions. In addition, there is no power transaction to the commercial building from the EV

charging stations during the aforementioned peak hours. Therefore, the remaining power

shortage is satisfied by one or more external resources, which is considered a penalty cost.

In addition, there are no changes in RES use after the disruption since it is utilized based

on its maximum capacity.
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Figure 3.8: Utilization of a commercial building’s resources in a typical day under normal

and disruption conditions
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Likewise, Figure 3.9 shows the utilization of power resources in relation to a particular

EV charging station, under both normal and disruption conditions. Figure 3.9b demon-

strates that part of the power shortage created by a power grid disruption (during the last

three peak hours) is satisfied by V2G and commercial buildings sources with respect to

their capacities. There is not much change in RES utilization since it is already utilized

near to its maximum capacity under normal conditions. Thus, the remaining power short-

age is satisfied by one or more external resources, which is considered a penalty cost. Some

demands are satisfied by swapping batteries in the range [154.2kW, 450.3kW]. Since the

upper bound of the electricity range of swapping batteries is 450.3kW, it is not shown in

Figure 3.9. It is worth noting that the overall energy network cost is increased by disrup-

tion, particularly due to penalty cost.
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Figure 3.9: Utilization of a EV charging station resources in a typical day under normal

and disruption conditions
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3.4.3.4 Impact of the Renewable Resource Size

Depending on the level of demand of the commercial buildings and EV charging sta-

tions, the RES size is determined. The availability and amount of energy that can be drawn

from a RES, µt, can vary during a day. The amount of electricity generated by the RES is

dependent on its size within commercial building b, ab, or within EV charging station i, ai.

Since RES size has an important effect on the utilization of other resources, particularly

during the first sup-peak hours and peak hours, the impact of the rrenewable resource size

on the overall energy network cost is investigated.

Since the RES size has an effect on power transaction between commercial buildings

and EV charging stations, as well as electricity flow to the PG, its effect is investigated at

four different levels of RES size in addition to the base case. These settings change the

RES size by ±25% and ±50%. As shown in Table 3.4, it is clear that there is an indirect

relationship between RES size and network cost with the overall energy network cost being

reduced as RES size increases. In addition, the impact of the RES size on network cost is

greater with respect to power transaction. Therefore, RES size has a considerable effect on

the energy network design (power transaction and electricity flow to the PG) and, conse-

quently, the overall energy network cost. This being the case, when power transaction is

considered, network cost is reduced by 23.72% when the RES size is increased by 50%.

3.5 Conclusion

This paper proposes a novel collaborative energy sharing optimization framework,

which considers two-way electricity flow among the PG, commercial buildings, and EV
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Table 3.4: System performance under different size of RES for building and CS
Percent change in

ab/ai

Power Transaction (PT)
CS1

(%)
CS2

(%)
CS3

(%)Operation cost with PT Operation cost without PT
Building CS Total Building CS Total

-50% 16,954.36 1,215.73 18,170.09 17,865.13 1,347.89 19,213.02 -14.85 -6.31 5.74
-25% 15,581.74 1,135.38 16,717.12 17,123.44 1,203.57 18,327.01 -5.67 -1.40 9.63

0% (Base case) 14,878.49 941.54 15,820.03 16,896.68 1,176.43 18,073.11 0.00 0.00 14.24
25% 14,123.47 836.56 14,960.03 16,763.84 1,104.51 17,868.35 5.44 1.13 19.44
50% 13,563.24 781.68 14,344.92 16,684.58 1,062.71 17,747.29 9.32 1.80 23.72

1Cost savings obtained comparing the altered RES size to its base case when PT is considered
2Cost savings obtained comparing the altered RES size to its base case when there is no PT
3Cost savings obtained at a given level comparing the use of PT against and not using of PT

charging stations. A two-stage stochastic MILP model [BEV] is formulated to determine

the key operational factors with the aim of network cost minimization under energy de-

mand uncertainty (thermal and electric energy). The operational decisions of buildings

include hourly power management decisions consisting of defining the startup/shutdown

time of the PGU and boiler, RES usage, charging/discharging state of a commercial-grade

battery and the TES, amount of electricity flow from/to the PG and related charging sta-

tions, and the amount of electricity and thermal energy charged, discharged, stored, and

transmitted from any of the components of the system. Likewise, the hourly operational

decisions of the charging stations include electricity flow from/to the PG and related build-

ings, RES usage, V2G power usage, and the number of batteries charged, discharged,

swapped, and stored. The model is computationally very challenging depending on the

number of buildings, charging stations, time periods, and potential number of scenarios

defined by a decision maker. To alleviate these challenges and to solve industry-size in-

stances, we develop an enhanced Sample Average Approximation (SAA) method. The

performance of the SAA method is improved with respect to generated valid inequalities.

Computational results indicate that the enhanced SAA method is capable of producing con-
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sistently high-quality solutions to realistic large-size problem instances within reasonable

computational times.

Sensitivity analysis performed on a case study based on the road network in San Fran-

cisco provides insightful results about the impact of demand variability, power transaction

limit, power grid disruption, and renewable resource size on the overall energy network

cost and design. In addition, computational experiments reveal numerous managerial in-

sights for managers to make operational decisions at the optimum network cost. The

following outcomes of our data-driven analysis can help decision makers to develop a

sustainable power management decision system related to commercial buildings and road

transportation sectors. Demand variability can be controlled by the buffer capacity. A

buffer with larger capacity is capable of reducing the amount of fluctuation on electricity

demand and electricity flow on a network entity. In addition, the overall energy network

cost is reduced more by increasing the permissible amount of power transferred between

related buildings and charging stations due to electricity demand shifting from peak hours

to off-peak hours. Also, availability of larger-scale RES has a considerable effect on power

transaction and electricity flow to the PG and, consequently, reduces the overall energy

network cost and design. Finally, the amount of power flow from the PG to a building or

charging station should be controlled so that PG utilization does not exceed a pre-specified

upper bound for electricity flow over several consecutive time periods. In summary, over-

all energy network cost is considerably affected by any change in the permissible power

transaction between buildings and charging stations, the buffer capacity of buildings, and

the RES size.
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There are several possible extensions of this research. A first would be to include

consideration of the impact of EV congestion at charging stations on a driver charging de-

cision. Apart from this, a more realistic approach can track drivers’ behaviors in relation to

the congestion at EV charging stations. Prevention and disruption models can be surveyed

with respect to limited power grid utilization. Furthermore, it would be interesting to con-

sider the stochastic nature of other parameters in the model such as the RES availability,

the SoC of commercial-grade batteries and the TES, and the SoC of EV batteries.
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CHAPTER IV

DESIGNING A RELIABLE ELECTRIC VEHICLE CHARGING STATION

EXPANSION UNDER UNCERTAINTY

4.1 Introduction

As a result of the growing concern over global warming, weather changes, and depen-

dence on fossil fuels, electric vehicles (EV) have gained tremendous attention all over the

world in the last few decades. In it’s continuation, we observe a tremendous EV sales in-

crease on U.S. market in recent years i.e., approximately, 700% sales increase from 2011

to 2016 [55] where nearly 82% sales increase only in December, 2016 over the same time

period in 2015 [35]. Additionally, with a number of incentive policies proposed by both

federal and state government, it is anticipated that there will be approximately 2.7 million

of EVs on the U.S. road by 2020. Furthermore, it is expected that EV market share will hit

10% by 2025 [56].

However, the large EV penetration will bring both challenges and opportunities for the

power grid (PG). Running these automobiles on electricity instead of gasoline shifts energy

requirements from gas pumps to the power grid. For instance, recent report reveal that the

high penetration of EVs have a significant impact on the existing power network systems

[72]. With another study by Qian et al. [98] state that a 10% market penetration of EVs

would increase the daily peak electricity demand up to 17.9%, whereas 20% level of EV
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penetration would lead to a 35.8% increase in peak electricity load. The Excessive power

flow through a transmission line leads to the line overheating and, consequently, cause the

transmission line failure. Thus, if the charging is unmanaged for such a large number of

EVs, the power grid can be affected negatively. These facts mandates an urgent need to

efficiently design and manage EV charging station to support large-scale deployment of

EVs and achieve efficient grid operation and true environmental protection.

The U.S. Energy Information Administration (EIA) reports that the power demand

varies significantly throughout the day [118] and from 10:0 A.M. to 8:0 P.M. are con-

sidered as peak hours of a regular day. The EIA further reports that replacing the internal-

combustion engine vehicles with EVs will add approximately 1,198 TWh of electricity de-

mand to the grid [119]. This number represents a nearly 29% increase in annual electricity

demand in the United States. With more EVs in the market, their charging on different

time period of the day can add a large load in the electricity grid. The excessive electricity

flow causes line over heating, which in extreme case cause power transmission line failure.

Thus, if the charging stations are not expanded and managed properly, the resultant exces-

sive load can bring serious disruption effect to the power grid system. To hedge against

this projected growth, power companies may need to upgrade electric distribution sys-

tems, increase capacities, integrate other forms of energies (e.g., renewable energy sources

(RES),vehicle-to-grid (V2G) system), introduce dynamic segment-wise pricing options,

and encourage off-peak charging so that the growing loads do not exacerbate peak demand.

To alleviate of excessive load on the PG one possible way is to integrate renewable en-

ergy sources (RES) with vehicle-to-grid (V2G) sources while planning for optimal charg-
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ing schedules for EVs. We observe a stream of research that address the integration of

renewable energy with V2G sources while planning for charging schedules of the electric

vehicles. For instance, Liu et al. [68] study how the smart charging patterns of electric ve-

hicles affect the power system scheduling while considering coordination of wind energy,

thermal units, and V2G sources. With another study by Ortega et al. [88] and Haddadian

et al. [46] investigate how the integration of V2G with power systems can be made to

achieve better efficiency and security. Results show that this coordination will allow to op-

erate efficiently under the existing power infrastructure. Likewise, Fathabadi [33] studies

the different effects of incorporating V2G and renewable energy with a power network.

The goal is to identify the best coordination that is effective in sustaining the system while

reducing the cost and loss of power production. Another study by He et al. [48] present a

global and a local scheduling model to decide on charging and discharging decisions for

electric vehicles with an aim of minimizing the overall system cost. Haddadian et al. [45]

consider electric vehicles as distributed storage devices and study their coordination with

renewable energy to make the power supply more stable. The authors propose a mixed-

integer programming (MIP) model to optimize the hourly scheduling of electricity where

several key components of the model such as hourly load, energy, and outages are gener-

ated using a Monte-Carlo simulation. Guo et al. [44] plan for the operations of electric

vehicle parking decks considering the availability of renewable energy sources. The goal is

to develop a tool to decide on hourly parking fees and charging prices based upon the fore-

cast values of the available renewable energy. Zhang et al. [134] introduce a scheduling

model to minimize the mean waiting time for charging the electric vehicles at the charging
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stations equipped with multiple plug outlets and availability of renewable energy sources.

Electric vehicle arrival, fluctuation in grid power prices, and level of production of renew-

able energy are modeled using a markov decision process. Hong et al. [51] and Jin et

al. [59] propose a stochastic optimization model model to determine charging strategies

for electric vehicles by taking into account overnight charging, peak-load discharging, and

availability of renewable energy. Although these studies have practical implications, they

attempt to manage EV charging activities for a single charging station while no attention

is given for charging station expansion decisions.

Another stream of research is dedicated to integration of microgrid system in elec-

tric vehicle charging to pacify the electricity load on power grid. For example, Beer et

al. [16] analyze the possibility of extending the life-cycle of EV batteries to a secondary,

stationary application. The important finding from the study that battery usage can be op-

timized by installing used battery packs in buildings’ micro-grids. Likewise, Momber et

al. [80] investigate the EVs’ integration into a building’s energy management system. The

authors model the relation by the distributed energy resources customer adoption model

(DER-CAM), which can able to find optimal equipment combinations for meeting micro-

grid requirements at minimum cost and carbon footprint. With another study by Kriett and

Salani [64] consider a generic mixed integer linear programming model to nd the minimum

cost operating schedule of both electrical and thermal supply and demand in a residential

microgrid system. Along in the same line, Kavousi-Fard and Khodaei [61] investigate the

viability of the re-configurable microgrids (RMGs) in facilitating the integration of electric

vehicles (EVs). The goal of the proposed optimal scheduling problem is to minimize the
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total cost of power supply by distributed energy resources (DERs) and upstream network

energy exchange, battery degradation cost in PEVs, cost of switching during the reconfigu-

ration, and expected customer interruption costs as a reliability index. Deilami et al. [29] in

another study, develop a novel load management solution for coordinating the charging of

multiple EVs in a smart grid system. The authors employ a real-time smart load manage-

ment algorithm based on maximum sensitivities selection optimizations to improve smart

grid performance with high penetration of EVs. Honarmand et al. [50] propose a new

energy resources scheduling for a microgrid consisting of renewable generation and EVs.

The authors shows that the intelligent scheduling and control of charging and discharging

of EVs introduces a great opportunity for evolving a sustainable integration of electrical

and transportation system. Note that most of the existing studies along this line attempt

to optimize EV charging (e.g., hourly charging, discharging, storing) and microgird oper-

ations decisions within the facility while little or no attention is given to the design and

expansions of charging stations.

Another theme found in the literature focuses on locating refueling stations to max-

imize traffic flow. For instacne, some stuides attempt to extend the single time period

flow-refueling location model (FRLM), introduced by Kuby and Lim [65], to multi-time

period expansion models. Chung and Kwon [23] extend the FRLM to a multi-period charg-

ing station location model where the comparison between the single-time and multi-time

period expansion model are made by constructing a case study using real traffic flow data

obtained from the Korean Expressway network. Zhang et al. [132] further extend FRLM

to determine an expansion plan (both location and capacity expansion) for the charging
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stations and charging modules over a pre-defined planning horizon. Another study by Li et

al. [67] propose a dynamic multi-period, multi-path refueling-location model that captures

the dynamics of topological structures of a network. The authors formulate the model as a

mixed-integer linear program which is later solved by using a GA approach. The objective

of this model is to minimize the total cost of installing new stations and relocating exist-

ing stations for the electric vehicles that can be used for intercity trips. Sweda and Klabjan

[112] identify the patterns in residential electric vehicle ownership and driving activities by

developing an agent-based decision support system to allow strategic deployment of new

charging stations. Chen et al. [22] perform regression analysis on parking survey data to

predict parking demand variables, local jobs and population densities, trip attributes, and

other variables to determine where to locate charging stations in a parking location. Jia et

al. [58] optimize the sizing and siting of electric vehicle charging stations and minimize

the cost of charging stations. Bouche et al. [12] use trip based origin-destination (OD) data

to evaluate the energy consumption of the electric vehicles that is used as an input to opti-

mally locate charging stations. Ge et al. [38] partition the planning area and then evaluate

the best location and sizing of charging stations for each partition using a GA approach.

The main goal is to minimize the cost of travel for an EV user. Hosseini and MirHassani

[52] introduce a two-stage stochastic refueling station location model, where the first-stage

locates permanent stations while the second locates portable station. A two-step heuristic

algorithm is used to solve the problem, where the first step reduces the size of the problem

by solving a relaxed version of the original model while the second step applies a greedy

algorithm to locate the charging stations. He et al. [47] use an equilibrium framework
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to capture the interactions between electricity prices, traffic flow, and availability of public

charging opportunities. The information obtained is used to determine the optimal location

of the electric vehicle charging stations. A mathematical program model is presented and

solved using an active-set decomposition algorithm. Ip et al. [57] use a clustering tech-

nique that compile data points that contain quantified road information of electric vehicle

charging demand in an urban setting to inform the location plans for the electric vehicle

charging stations. Xi et al. [130] use a simulation-optimization model that determines

where to locate electric vehicle chargers and the best combinations of power levels to be

used at each location. Bhatti et al. [17] study a two-stage optimal location decision prob-

lem, where the demand information is learned over time. A key feature of the model is to

provide a solution for whether to actively learn the market through a greater initial invest-

ment in the alternative fuel stations network or to deter the commitment since an overly

aggressive investment often results in sub-optimal alternative fuel stations’ locations. With

another study, Arslan and Karasan [7] study the charging station location problem with

plug-in hybrid electric vehicles as a generalization of the flow refueling location problem

(FRLM). Furthermore, the authors propose a Benders decomposition approach to solve this

problem. Recently, Vries and Duijzer [122] prove FRLM as strongly NP-hard, and pro-

pose a novel mixed-integer linear programming formulation for the FRLM. The authors

also demonstrate how this model can be extended to the case for which the driving range

varies during a trip. Though these extensions are practical, the authors only concentrate

on charging station expansion decisions and little or almost no attention is paid on how to

manage them. However, in reality, both long-term (e.g., location decisions) and short-term
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charging station decisions (e.g., hourly management decisions) need to be optimized si-

multaneously in order to benefit the development of this future sustainable transportation

system. Although these studies have some implications, however, they give little attentions

to short-term EV charging station operational decisions. Further, they ignore the reliability

of power network due to the over flowing of electricity.

After surveying the literature we found that till now no prior studies have investigated

the reliability of EV charging station with uncertain power demand and integrated long-

term charging station planning decisions with short-term operational decisions in a same

decision making framework. We notice from the existing body of literature that there are

models that captures either long-term charging station planning decisions or short-term op-

erational charging stations managing decisions. To fill this gap in the literature, we develop

and solve a reliable EV charging station planning and managing problem with explicit con-

sideration of random power demand. We model the condition of the line temperature due to

the excessive flow of electricity. The contributions of this paer are summarized as follows:

1. We develop a novel reliable two-stage stochastic mixed-integer non-linear program-

ming model that incorporates both long term planning decisions and short-term

hourly operational decisions to design and manage reliable electric vehicle charg-

ing station decisions under stochastic power demand. The proposed model differs

from existing studies in that:

(a) We consider a reliable two-stage stochastic program where in the first-stage we

determine size, type and timing to open charging stations based on stochastic
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demand, and in the second-stage we satisfy the charging stations demand and

track the operations of demand response with a short-term hourly time resolu-

tion.

(b) To lienarized the model, we employ three linearization techniques based on

McCormick relaxation techniques (also known as McCormick envelopes).

2. We propose and implement a customized hybrid decomposition solution approach

that combines a Sample Average Approximation algorithm with an enhanced Sce-

nario Decomposition Algorithm to solve our proposed optimization model. The

enhanced Scenario Decomposition Algorithm incorporate different variants of the

rolling horizon heuristic.

3. We apply the proposed model and algorithm to a realistic scale case study based on

the road network of Washington, D.C. The outcome of this study provides a number

of interesting managerial insights on total system cost and optimal system design.

The decision includes optimal reliable EV charging station expansion, number of

batteries charged, discharged, stored, vehicle-to-grid, RES, grid power usage deci-

sion under stochastic power demand. These results can effectively help decision

makers to investigate the impact of hourly demand management capabilities of a

charging station. Further, we demonstrate the computational performance of our

customized hybrid algorithm relative to its generic version. It is worth mention-

ing that that algorithm [SAASD/LD] provides an 44.3% and 57.5% faster solution

than algorithms [SAASD] and [SAAbasic], respectively while dropping the average
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optimality gap from 2.33% and 2.05% to 0.66%, respectively. By conducting a com-

prehensive computational study, we show that the enhanced variant of the hybrid

decomposition algorithm is capable of producing high-quality solutions consistently

to solve realistic large-size problem instances in a reasonable amount of time.

The remainder of this paper is organized as follows. Section 4.2 presents the two-stage

stochastic programming model formulation for optimal sizing and locating of charging

station considering power demand uncertainty. The hybrid solution approach to solve our

optimization model is introduced in Section 4.3. Section 4.4 presents a series of numerical

experiments to draw managerial insights and verify the algorithmic performances. Lastly,

Section 4.5 provides conclusions and also briefly discusses future research directions.

4.2 Problem Description and Model Formulation

The electricity supply for electric vehicle charging stations at a transportation network

is known as an electricity supply network. The problem description is provided in this

section, which is followed by two-stage stochastic mixed-integer nonlinear programming

(MINLP) model to solve the research problem optimally. The model determines the design

of the electricity supply network in terms of the type, location, and time of established

charging stations along with electricity flow from limited resources to established charging

stations. The purpose of the model is to minimize the overall electricity supply network

cost with respect to network design, which allows decision makers for serving electricity

demands in an efficient way. In addition, three linearization techniques are proposed in

terms of basic McCromick linearization technique to relax bilinear variables of the model.
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4.2.1 Problem Description

The problem addressed in this study considers an electricity supply network including

multiple charging stations with different electric supply capacities to satisfy electricity

demand under demand uncertainty. In order to make strategic and operational decisions

for satisfying uncertain demands, the transportation network is divided into a set of cells I,

where each cell can be considered as a potential location to establish a charging station over

a set of time periods including a set of hours H and a set of years T . Charging stations

are established at different cells with respect to a set of electric supply capacities K. In

this research, two types of charging stations are considered with respect to set K: type 1

charging stations which include the PG, the RES, and V2G usage as power resources; and

type 2 charging stations which include swappable batteries as the main power resource in

addition to power resources available for type 1 charging stations.

Electricity demand of charging stations are satisfied by limited electricity supplied

through three different resources: (i) conventional power generators, which are gener-

ally located in power stations and send electricity through power grids; (ii) solar power

as renewable energy sources; and (iii) discharge of electric vehicles into the grid through

vehicle-to-grid connection capabilities. If the self-supplied electricity of a charging sta-

tion, i.e., the RES, along with the electricity supplied by the PG and V2G are not sufficient

to satisfy electricity demand of the charging station, penalty cost is imposed to the net-

work in relation to unsatisfied demands due to power shortage and/or satisfied demands

due to imported power from resources outside of the network. Figure (4.1) demonstrates
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the electricity supply network including several network cells and two types of established

charging stations along with electric energy flow of different electricity resources.

Figure 4.1: Illustration of integration of different electricity supply resources with two

types of charging stations established at different network cells

The demand of each cell is modeled as a random variable of which probability distri-

bution might not be known in advance. Accurate prediction, even for small-scale network,

is difficult due to the stochastic nature of network along with the uncertainty in available

resources. Therefore, a set of scenarios Ω is determined, where each scenario is associ-

ated with a positive probability. Electricity demand of each cell is determined in terms

of the expected number of electric vehicles traversed through the cell in each time period
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and, consequently, the percentage of those that requires to be charged under each scenario.

Likewise, expected V2G electricity availability is determined in terms of the percentage of

electric vehicles required to be discharged in each time period under each scenario. Since

electricity usage cost is dependent on the amount of electricity usage so that it is exponen-

tially increased by electricity usage increment, a pricing mechanism is determined based

on a set of segments R in such a way that each segment is related to a different range of

electricity usage with a particular price per unit consumption.

Excessive power flow through a transmission line leads to the line overheating and,

consequently, the transmission line failure. To describe this effect, the evolution of the line

temperature is monitored based on power flow in the line. Then, the failure of a transmis-

sion line is determined based on power flow loading over the line transmission capacity.

Thus, a prevention model is proposed to prevent electricity supply network disruption. Re-

garding strategic and operational decisions, the research problem is to design an electricity

supply network over a pre-specified planning horizon and under electricity demand un-

certainty. Optimal strategic decisions include long-term electric vehicle charging station

expansion decisions consisting of establishment time, location, and type for charging sta-

tions in each year. Optimal operational decisions include short-term power management

decisions to not only satisfy demands, but also prevent network disruption. Operational

decisions determine the number of charged, discharged, exchanged, and stored batteries as

well as the amount of V2G, renewable, power grid usage in each hour.

The other assumptions considered for the research problem are summarized as follows:
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• annual establishment and development costs of charging stations

• annual dynamic size of RES at each charging station

• annually limited number of available batteries at each charging station

• annually limited number of plug-ins for charging/discharging of batteries at each

charging station

• minimum annual demand to establish charging stations

• limited solar radiation and V2G energy

• maximum amount of hourly electricity flow to network cells from PG

• no power transaction among charging stations

• power flow restriction through the transmission lines

• pre-determined equally time periods in terms of hours and years

4.2.2 Model Formulation

Since electricity demand is stochastic, a two-stage stochastic MINLP model is pro-

posed to simultaneously determine yearly strategic decisions and hourly operational deci-

sions through a set of time periods over a pre-specified planning horizon. In the first-stage,

an electricity supply network is designed in terms of annual establishment location and type

of charging stations at different cells of a transportation network, while hourly electricity

flow from power resources is determined with respect to disruption prevention under each

scenario in the second-stage of the MINLP model. The first-stage decision variable deter-

mines the electricity supply network design in each year, while the second-stage decision

variables determine hourly electricity flow as follows:

• electricity flow from PG to charging stations under disruption prevention
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• electricity flow from V2G and RES to charging stations

• number of charged, discharged, stored. and exchanged batteries at type 2 charging

stations

• power shortage in each charging station

In the following, the sets and indices, subsets, parameters, and decision variables are

briefly explained and followed by the mathematical formulation. Parameters are intro-

duced by lowercase and Greek letters, while variables are introduced by uppercase letters.

Additionally, the superscript of parameters represent their brief descriptions, while their

subscripts represent their indices.

Sets and Indices

I set of cells, indexed by i

K set of charging station types, indexed by k

R set of segments of charging price, indexed by r

Ω set of scenarios, indexed by ω

H set of hours, indexed by h

T set of years, indexed by t

Parameters

• ψikt: annual establishment and development cost of charging station of type k at cell

i in year t

• fiht: electric vehicle flow at cell i in hour h of year t
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• λ: average unit power required for charging each electric vehicle (kWh)

• γ: average unit power obtained from discharging each electric vehicle (kWh)

• ηhtω: percentage of electric vehicle charged in hour h of year t under scenario ω

• βht: percentage of electric vehicle discharged in hour h of year t

• c+rht: unit PG electricity cost for segment r of charging price in hour h of year t

($/kWh)

• cv2ght : unit V2G electricity cost in hour h of year t ($/kWh)

• arit: RES size of a charging station established at cell i in year t

• ηr: RES electricity generation efficiency

• briht: solar radiation available at cell i in hour h of year t

• cuht: unit penalty cost for power shortage in hour h of year t ($/kWh)

• pcskt: minimum power requirement to establish a charging station of type k in year t

• csht: unit storage cost per battery in hour h of year t

• c−ht: unit electricity selling price to PG in hour h of year t ($/kWh)

• qint : number of plug-ins available for charging batteries in year t

• qoutt : number of plug-ins available for discharging batteries in year t

• ut: maximum number of available batteries at each type 2 charging station in year t

• wa
iht: outside temperature at cell i in hour h of year t

• uaiht: air velocity at cell i in hour h of year t

• td: duration of time period (hr)

• φmax
iht : maximum limit of power line temperature before disruption at cell i in hour h

of year t
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• gmax
iht : maximum limit of power line electricity before disruption at cell i in hour h

of year t

• gr: maximum electricity availability in segment r of charging price

• π: percentage of the risk aversion degree

• νetc: electricity-to-carbon conversion factor

• cc: carbon emission tax ($/ton)

• amax
iht : maximum power available for charging electric vehicles1 at cell i in hour h of

year t

• ρω: probability of scenario ω

In the following, the first- and second-stage decision variables of two-stage stochastic

MINLP model are briefly explained.

Decision Variables First-stage Decision Variable

• Yikt: 1 if a charging station of type k is established at cell i in year t; 0 otherwise

Second-stage Decision variables

• Grihtω: electricity flow from PG to cell i in hour h of year t under segment r and

scenario ω

• Erihtω: electricity flow from PG to cell i to charge electric vehicles in hour h of year

t under segment r and scenario ω

• Zihtω: electricity flow from RES to cell i in hour h of year t under scenario ω

• Vihtω: electricity flow from V2G to cell i in hour h of year t under scenario ω

1Calculated based on the number of plug-in available and average charging time of electric vehicles
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• Rihtω: power shortage at cell i in hour h of year t under scenario ω

• Hihtω: number of full-charged batteries available at cell i in hour h of year t under

scenario ω

• Bihtω: number of swapped batteries at cell i in hour h of year t under scenario ω

• Srihtω: number of charging batteries at cell i in hour h of year t under segment r and

scenario ω

• Pihtω: number of discharging batteries at cell i in hour h of year t under scenario ω

• Xrihtω: 1 if a charging price of a charging station established at cell i in year t is in

segment r in hour h under scenario ω; 0 otherwise

Before going through the proposed model, the operational decision in relation to the

prevention and control of the transmission line failure is explained. The behavior of cus-

tomers, i.e., charging stations owners, determines risk aversion π, when exposed to uncer-

tainty, in attempting to lower that uncertainty. It is a trade-off between a situation with an

unknown payoff and another situation with a more predictable payoff but possibly lower

expected payoff. Transmission lines are assumed to be so thin such that the temperature is

the same at all points of their cross-section. A transmission line is considered with a con-

stant area of cross-section ω, perimeter p, thermal conductivity K, electrical conductivity

σ, density ρ, and specific heat c. The heat flux across the surface of the line is proportional

to the temperature difference between the surface and the surrounding medium (air). It is

given by H(T − T
′
), where T and T ′ denote the surface and surrounding temperatures

of a line, respectively, and H signifies the surface conductance. In order to estimate H ,

it is assumed that the loss of heat across the surface of the line is due to forced convec-
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tion. In addition, H depends on the velocity and the nature of the surrounding medium

along with the transmission line shape [5]. The surface conductance is represented as

H = 8 × 10−5(uaiht/d)
1/2 cal/(cm2sK), where uaiht and d represent turbulent flow of air

velocity and transmission line diameter, respectively.

The power flow fluctuation through transmission lines propagates much faster than any

heat flow transient. In addition, the spatial variation in temperature through the line is

neglected since the heat source is equally distributed through a line. Therefore, the impact

of time evolution in the line temperature in term of the power flowing through the line, i.e.,

Tihtω(td, Grihtω), is described as follows:

Tihtω(td, Grihtω) = e−νihttd
(
Ti(h−1)tω(Gri(h−1)tω)− Tihtω(Grihtω)︸ ︷︷ ︸

Temp. difference between two consecutive periods

)
+ Tihtω(Grihtω)

and

Tihtω(Grihtω) =
α

νiht

(Grihtω)
2

V 2
+ wa

iht

where td is time evolution for each time period h, ∀h ∈ H; Grihtω is the amount of

power flowing through the line; and Tihtω(Grihtω) and Tihtω(td, Grihtω) are the surface tem-

perature of the line in time period h and during time evolution td, respectively. The voltage

of the line is obtained by V = Grihtω/Iiht, while wa
iht is the surrounding temperature of the

line. Furthermore, νiht = Hp/(ρcω) and α = 0.239/(ρcω2σ). By substituting α, νiht, and

H in Tihtω(Grihtω), the surface line temperature in time period h is obtained as follows:

Tihtω(Grihtω) = ca
(Grihtω)

2

(uaiht)
1
2

+ wa
iht
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where ca is a constant value as ca = (0.239d
1
2 )/(8 × 10−5ωσpV 2). As a result, the

surface line temperature has an indirect relationship with air velocity. Following the same

procedure, νiht is calculated based on air velocity as follows:

νiht = cb(uaiht)
1
2

where cb is a constant value as cb = (8× 10−5p)/(ρcωd
1
2 ). Generally, the surface line

temperature during time evolution depends on the surrounding line temperature, power

flow through the line, and air velocity in a particular time period. Therefore, the surface

line temperature during time evolution is recalculated with the help of Tihtω(Grihtω) and

νiht which are represented by Grihtω, uaiht, and wa
iht as follows:

Tihtω(td, Grihtω) = e−cb(ua
i(h+1)t

)
1
2 td

(
ca
((

(uaiht)
− 1

2 (Grihtω)
2
)
−
(
(uai(h+1)t)

− 1
2 (Gri(h+1)tω)

2
))

+
(
wa

iht − wa
i(h+1)t

))
+ ca(uai(h+1)t)

− 1
2 (Gri(h+1)tω)

2 + wa
i(h+1)t

where the surface line temperature during a particular time evolution is set as

Tihtω(td, Grihtω) ≤ φmax
iht in order to prevent and control the transmission line failure. It is

clear that φmax
iht restricts gmax

iht also. In addition, the maximum limit of power line electric-

ity is not permissible for electricity flow from the PG to a charging station for each two

consecutive time periods, since it leads to power disruption. In the following, two-stage

stochastic MINLP model refereed as [NEV] is presented.
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Mathematical Model

The objective function minimizes annual establishment and development costs of es-

tablished charging stations along with power flow costs through available energy resources

to satisfy electricity demand of network cells. The first-stage decisions made prior to real-

izing any stochastic event (e.g., electricity demand) correspond to the state of establishing

and developing charging stations in each time period, while the second-stage decisions

include determining electricity flow from the PG, RES, and V2G to established charg-

ing stations as well as battery inventory management at established charging stations of

type 2. The aim is to minimize the first-stage costs and the expected value of the random

second-stage costs across all possible electricity demand scenarios. The objective function

of model [NEV] is proposed as follows:

[NEV] Minimize
Y

∑
i∈I

∑
k∈K

∑
t∈T

ψiktYikt︸ ︷︷ ︸
Establishment cost

+E[Q(Y, ω)] (4.1)

In [NEV], the first-stage objective function represented by the first term of Eq. (4.1)

determines the cost associated with annual establishment and development costs of differ-

ent types of charging stations established on different cells of an electricity supply network.

The following constraints (4.2) through (4.4) are related to the first-stage problem.

∑
k∈K

Yikt ≤ 1 ∀i ∈ I, t ∈ T (4.2)

Yik(t−1) ≤ Yikt ∀i ∈ I, k ∈ K, t ∈ T (4.3)

Yikt ∈ {0, 1} ∀i ∈ I, k ∈ K, t ∈ T (4.4)
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Constraints (4.2) ensure that at most one charging station of all types is established in

a given cell of network, while constraints (4.3) indicate that if a charging station is estab-

lished in a particular year, it remains active for the subsequent years. Constraints (4.4) set

the binary restrictions for the first-stage decision variables.

In [NEV], E[Q(Y, ω)] =
∑

ω∈Ω ρωQ(Y, ω) and Q(Y, ω) is the objective function of

the following second-stage problem:

Q(Y, ω) =Minimize
G,S,V,R,H,P

∑
i∈I

∑
h∈H

∑
t∈T

(∑
r∈R

c+rhtGrihtω + cv2ght Vihtω︸ ︷︷ ︸
Electricity flow cost

+ ccνetc
∑
r∈R

Grihtω︸ ︷︷ ︸
Carbon emission cost

+ cuhtRihtω︸ ︷︷ ︸
Power shortage cost

+ cshtHihtω︸ ︷︷ ︸
Battery storage cost

− c−htγPihtω︸ ︷︷ ︸
Battery discharging benefit

)
(4.5)

In [NEV], the second-stage objective function represented by the second term of Eq.

(4.1) determines the expected cost associated with electricity flow, carbon emission, and

power shortage at established charging stations of each type along with the expected cost

associated with battery storage and the expected benefit of battery discharging at estab-

lished charging stations of type 2. With respect to charge loading of electric vehicles and

batteries, optimal electricity flow is determined from the PG to charging stations in terms

of a particular charging price. In addition, electricity flow from the PG imposes carbon

emission cost to the model. Restricted capacities of power resources and charging price

strategy along with predicting power disruption determine power shortage cost (unsatisfied

demands), while battery inventory management determines battery storage cost. Finally,

the surplus electricity of type 2 charging stations is sent to the PG in order to reduce op-
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erational costs. The following constraints (4.6) through (4.31) related to the second-stage

problem determine operational decisions.

∑
r∈R

Erihtω + Zihtω + Vihtω + λBihtω ≥
∑
k∈K

pcsktYikt ∀i ∈ I,(4.6)

h ∈ H, t ∈ T , ω ∈ Ω(
ληhtωfiht − (

∑
r∈R

Erihtω + Zihtω + Vihtω + λBihtω)
)

= Rihtω ∀i ∈ I, (4.7)

h ∈ H, t ∈ T , ω ∈ Ω

max
{⌊ληhtωfiht − (amax

iht + aritb
r
ihtη

r + γβhtfiht)

λ

⌋
, 0
}
Yi2t ≥ Bihtω ∀i ∈ I, (4.8)

h ∈ H, t ∈ T , ω ∈ Ω

Constraints (4.6) guarantee to satisfy a set of minimum power requirement to establish

charging stations in different time periods. Constraints (4.7) guarantee electricity supply

for uncertain electric demand of each charging station where electricity resources include

the RES, full-charged batteries, the PG, V2G, and an external resource(s) as power shortage

compensation. Constraints (4.8) restrict the number of swapped batteries at type 2 charging

station with respect to the difference between electricity demand and electricity supplied

by resources. The following constraints (4.9) through (4.18) correspond to battery storage

management at type 2 charging stations.
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Hi11ω = u1Yi21 ∀i ∈ I, ω ∈ Ω (4.9)∑
r∈R

Sri11ω = 0 ∀i ∈ I, ω ∈ Ω (4.10)∑
r∈R

Srih1ω ≤ u1 −Hih1ω ∀i ∈ I, h ≥ 2, ω ∈ Ω (4.11)∑
r∈R

Srihtω ≤ ut −Hihtω ∀i ∈ I, h ∈ H, t ≥ 2, ω ∈ Ω (4.12)∑
r∈R

Srihtω ≤ qint Yi2t ∀i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω (4.13)

Pihtω ≤ qoutt Yi2t ∀i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω (4.14)

Bihtω + Pihtω ≤ Hihtω ∀i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω (4.15)

Hihtω −Bihtω − Pihtω + (4.16)∑
r∈R

Srihtω = Hi(h+1)tω ∀i ∈ I, h ∈ H\|H|, t ∈ T , ω ∈ Ω

Hi|H|tω −Bi|H|tω − Pi|H|tω + (4.17)∑
r∈R

Sri|H|tω = Hi1(t+1)ω ∀i ∈ I, t ∈ T \|T |, ω ∈ Ω

At the beginning of the planning horizon, a restricted number of full-charged batter-

ies is considered at type 2 charging stations. In addition, since all available batteries are

charged, the number of charging batteries is set to zero. Therefore, constraints (4.9) and

(4.10) are added into the model. Constraints (4.11) and (4.12) restrict the number of charg-

ing batteries based upon battery availability and inventory. Constraints (4.13) and (4.14)

restrict the number of charging and discharging batteries by the number of plug-ins avail-

able at each type 2 charging station, respectively. Constraints (4.15) restrict the number of

discharging batteries and battery demand to available full-charged batteries. Finally, con-
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straints (4.17) and (4.18) determine the number of available full-charged batteries in terms

of previous inventory along with the number of charging/discharging batteries and battery

demand.

∑
r∈R

Xrihtω =
∑
k∈K

Yikt ∀i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω (4.18)

Xrihtωgr−1 ≤ Grihtω ≤ Xrihtωgr ∀r ∈ R, i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω (4.19)

Grihtω = Erihtω + λSrihtω ∀r ∈ R, i ∈ I, h ∈ H, t ∈ T , (4.20)

ω ∈ Ω

Constraints (4.18) consider a segment of charging price at each time period for each

charging station and, consequently, constraints (4.19) and (4.20) restrict electricity flow

from the PG to each charging station based on selected charging price in relation to charge

electric vehicles and/or batteries.

∑
r∈R

(Grihtω +Gri(h+1)tω) ≤
∑
k∈K

Yikt
(
gmax
iht + gmax

i(h+1)t

)(
1− π

)
∀i ∈ I, (4.21)

h ∈ H\|H|, t ∈ T , ω ∈ Ω∑
r∈R

(Gri|H|tω +Gri1(t+1)ω) ≤
∑
k∈K

Yikt
(
gmax
i|H|t + gmax

i1(t+1)

)(
1− π

)
∀i ∈ I, (4.22)

t ∈ T \|T |, ω ∈ Ω

Constraints (4.21) indicate that electricity flow from the PG to each charging station

is not beyond the maximum limit of power line electricity for each two consecutive time

period in order to prevent power disruption. The maximum limit of power line electricity is
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dependent on risk aversion degree, i.e., π, of decision makers. Likewise, constraints (4.22)

create a connection between the last and first time periods of each of two consecutive years.

e−cb{ua
i1t}

1
2 td
[
− ca

(
(uai1t)

− 1
2

∑
r∈R

(Gri1tω)
2
)
+
(
wa

i0t − wa
i1t

)]
+ (4.23)

ca{uai1t}−
1
2

∑
r∈R

(Gri1tω)
2 + wa

i1t ≤ φmax
i1t ∀i ∈ I, t ∈ T , ω ∈ Ω

e−cb{ua
i(h+1)t

}
1
2 td
[
ca
((

(uaiht)
− 1

2

∑
r∈R

(Grihtω)
2
)
−
(
(uai(h+1)t)

− 1
2

∑
r∈R

(Gri(h+1)tω)
2
))

(4.24)

+
(
wa

iht − wa
i(h+1)t

)]
+ ca{uai(h+1)t}−

1
2

∑
r∈R

(Gri(h+1)tω)
2 + wa

i(h+1)t ≤ φmax
i(h+1)t

∀i ∈ I, h ∈ H\|H|, t ∈ T , ω ∈ Ω

e−cb(ua
i1(t+1)

)
1
2 td
[
ca
((

(uai|H|t)
− 1

2

∑
r∈R

(Gri|H|tω)
2
)
−
(
(uai1(t+1))

− 1
2

∑
r∈R

(Gri1(t+1)ω)
2
))

(4.25)

+
(
wa

i|H|t − wa
i1(t+1)

)]
+ ca(uai1(t+1))

− 1
2

∑
r∈R

(Gri1(t+1)ω)
2 + wa

i1(t+1) ≤ φmax
i1(t+1)

∀i ∈ I, t ∈ T \|T |, ω ∈ Ω

Constraints (4.23) through (4.25) restrict the surface line temperature to the maximum

limit of power line temperature in order to prevent power disruption during each time pe-

riod. As mentioned, the current surface line temperature depends on the electricity flow

from the PG in relation to the current and previous time periods (Grihtω and Gri(h+1)tω),

duration of each time period (td), outside temperature (wa
iht), and air velocity (uaiht). Con-

straints (4.23) and (4.25) control the transmission line failure at the beginning of each year,

while constraints (4.24) control it during time periods within each year.
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Vihtω ≤
∑
k∈K

γβhtfihtYikt ∀i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω (4.26)

Zihtω ≤
∑
k∈K

aritb
r
ihtη

rYikt ∀i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω (4.27)

Constraints (4.26) restrict the availability of V2G electricity flow based on electric

vehicles inclined to be discharged at each cell of the network, while constraints (4.27)

restrict the RES electricity flow based on RES size and electricity generation efficiency as

well as the solar radiation availability.

Xrihtω ∈ {0, 1} ∀r ∈ R, i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω(4.28)

Bihtω, Hihtω, Srihtω, Pihtω ∈ Z+ ∀r ∈ R, i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω (4.29)

Grihtω, Erihtω, Zihtω, (4.30)

Vihtω, Rihtω ≥ 0 ∀r ∈ R, i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω

Constraints (4.28) define the binary restriction for the second-stage decision variables,

while constraints (4.29) through (4.31) define standard integrality and non-negativity con-

straints.

4.2.3 Model Linearization

McCormick Envelopes are a type of convex relaxation used to define the convex en-

velopes of the bilinear function/term on the rectangular domain. Since solving non convex

problems, which lead to multiple local solutions, is a complicated task, the non convex
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function is transformed into a convex function by relaxing the parameters on the prob-

lem. Relaxing the bounds through a convex relaxation decreases the computational burden.

Having a tighter relaxation that is still convex will provide a lower bound that is closer to

the solution. The McCormick Envelope is one particular kind of relaxation that guaran-

tees convexity and tight bounds simultanously. McCormick relaxation is a widely used

approach to linearize bi-linear terms when the lower bound and an upper bound of each

bi-linear variable are known [78].

Based upon McCormick relaxation method, also known as McCormick envelopes,

three linearization techniques are used to solve model [NEV]. The first technique, referred

to [LEV1], is based on the standard McCormick relaxation. The second technique, re-

ferred to [LEV2], divides the domain of bi-linear variables into a set of uniform partitions.

In addition to uniform partition of the domain of bi-linear variables, a new set of binary

variables are introduced into the third technique, referred to [LEV3]. Recognizing a new

decision variable Q := {Qrihtω}r∈R,i∈I,h∈H,t∈T ,ω∈Ω as Qrihtω = (Grihtω)
2, the following

bi-linear set is determined:

Q :=
(
(Qrihtω, Grihtω) ∈ R+ : Qrihtω = (Grihtω)

2, gLiht ≤ Grihtω ≤ gUiht∀r ∈ R, (4.31)

i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω
)

where gLiht and gUiht are, respectively, the lower bound and upper bound of the amount of

power flow from the PG to network cell i in time period h of year t, i.e., Grihtω ∈ [0, gmax
iht ],

under different demand scenarios and segments of charging prices. Model [ELV1] replaces
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all squared instances of variable Grihtω, i.e., (Grihtω)
2, with a new variable denoted as

Qrihtω in constraints (4.23) through (4.25). In addition, the following constraints are added

into model [ELV1]:

∑
r∈R

Qrihtω ≥
∑
r∈R

2gLihtGrihtω − (gLiht)
2 ∀i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω (4.32)∑

r∈R

Qrihtω ≥
∑
r∈R

2gUihtGrihtω − (gUiht)
2 ∀i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω (4.33)∑

r∈R

Qrihtω ≤
∑
r∈R

gLihtGrihtω +
∑
r∈R

gUihtGrihtω − gLihtgUiht ∀i ∈ I, h ∈ H, (4.34)

t ∈ T , ω ∈ Ω

Based on previous studies [10, 102], the accuracy of the standard McCormick relax-

ation is enhanced by dividing the domain of bi-linear variables into a set of uniform par-

titions. Model [LEV2] divides the domain of Grihtω into set L of uniforms partitions as

follows:

gLihtl = gLiht + (gUiht − gLiht)
l − 1

|L|
∀i ∈ I, h ∈ H, t ∈ T , l ∈ L

gUihtl = gLiht + (gUiht − gLiht)
l

|L|
∀i ∈ I, h ∈ H, t ∈ T , l ∈ L

where gLihtl and gUihtl are the lower bound and the upper bound of partition l, ∀l ∈ L,

respectively. It is clear that the lower bound and the upper bound of the first and last

partitions of Grihtω, respectively, are its original lower bound and the upper bound, i.e.,

gLiht1 = 0 and gUiht(|L|) = gmax
iht . Model [ELV2] replaces all squared instances of variable

Grihtω with Qrihtω in constraints (4.23) through (4.25) and, consequently, the following

constraints are added into model [ELV2]:
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∑
r∈R

Qrihtω ≥
∑
r∈R

gLihtlGrihtω +
∑
r∈R

gLihtGrihtω − gLihtgLihtl ∀i ∈ I, h ∈ H, (4.35)

t ∈ T , ω ∈ Ω, l ∈ L∑
r∈R

Qrihtω ≥
∑
r∈R

gUihtlGrihtω +
∑
r∈R

gUihtGrihtω − gUihtgUihtl ∀i ∈ I, h ∈ H, (4.36)

t ∈ T , ω ∈ Ω, l ∈ L∑
r∈R

Qrihtω ≤
∑
r∈R

gLihtlGrihtω +
∑
r∈R

gUihtGrihtω − gUihtgLihtl ∀i ∈ I, h ∈ H, (4.37)

t ∈ T , ω ∈ Ω, l ∈ L∑
r∈R

Qrihtω ≤
∑
r∈R

gUihtlGrihtω +
∑
r∈R

gLihtGrihtω − gLihtgUihtl ∀i ∈ I, h ∈ H, (4.38)

t ∈ T , ω ∈ Ω, l ∈ L

gLihtl ≤ Grihtω ≤ gUihtl ∀r ∈ R, i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω, l ∈ L (4.39)

gLiht ≤ Grihtω ≤ gUiht ∀r ∈ R,∈ I, h ∈ H, t ∈ T , ω ∈ Ω, l ∈ L (4.40)

To further increase the accuracy of the standard McCormick relaxation, i.e., better

bounds and, consequently, lower gap between bounds, a new set of binary variables Urihtlω

is introduced into model [LEV2]. These binary variables are generated for

activating/deactivating generated partitions/search regions. In other words, They guarantee

the activation of only one generated serach region at any time. This techniques was first

introduced by Castro [19], which is known as piecewise McCormick relaxation. Model

[ELV3] replaces all basic and squared instances of bi-linear variable Grihtω with new vari-

ables denoted as Grihtlω and Qrihtω, respectively, through the whole model. In addition,

the following constraints are added into model [ELV3]:
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Grihtω =
∑
l∈L

Grihtlω ∀r ∈ R, i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω (4.41)∑
l∈L

Urihtlω = 1 ∀r ∈ R, i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω (4.42)

Urihtlωg
L
ihtl ≤ Grihtlω ≤ Urihtlωg

U
ihtl∀r ∈ R, i ∈ I, h ∈ H, t ∈ T , l ∈ L, ω ∈ Ω(4.43)

Urihtlωg
L
iht ≤ Grihtlω ≤ Urihtlωg

U
iht∀r ∈ R, i ∈ I, h ∈ H, t ∈ T , l ∈ L, ω ∈ Ω(4.44)∑

r∈R

Qrihtω ≥
∑
r∈R

∑
l∈L

(
gLihtlGrihtlω + gLihtGrihtlω − gLihtlgLihtUrihtlω

)
∀i ∈ I, (4.45)

h ∈ H, t ∈ T , ω ∈ Ω∑
r∈R

Qrihtω ≥
∑
r∈R

∑
l∈L

(
gUihtlGrihtlω + gUihtGrihtlω − gUihtlgUihtUrihtlω

)
∀i ∈ I, (4.46)

h ∈ H, t ∈ T , ω ∈ Ω∑
r∈R

Qrihtω ≤
∑
r∈R

∑
l∈L

(
gUihtlGrihtlω + gLihtGrihtlω − gUihtlgLihtUrihtlω

)
∀i ∈ I, (4.47)

h ∈ H, t ∈ T , ω ∈ Ω∑
r∈R

Qrihtω ≤
∑
r∈R

∑
l∈L

(
gLihtlGrihtlω + gUihtGrihtlω − gLihtlgUihtUrihtlω

)
∀i ∈ I, (4.48)

h ∈ H, t ∈ T , ω ∈ Ω

Grihtlω ≥ 0 ∀r ∈ R, i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω, l ∈ L (4.49)

Urihtlω ∈ {0, 1} ∀r ∈ R, i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω, l ∈ L (4.50)

It is worth noting that there is no method to estimate |L| as a function of problem com-

plexity. On the other hand, there is a need to provide a fair comparison with commercial

solver. The following proposed formula guarantees the minimum of two partitions to take

the benefits from piecewise relaxation scheme:
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|L| = 1 + ⌈ α

(vi + vj)
⌉

where α = 1.8E4. In addition, vi and vj indicate the number of non-partitioned and

partitioned variables, respectively. Since preliminary investigations indicate that model

[LEV3] is capable of providing superior relaxation with lower gap compared to model

[LEV1] and model [LEV2], model [LEV3] is utilized to linearize model [NEV].

4.3 Solution Approach

Minimizing uncapacitated facility location problem has been shown to be a strongly

NP-Hard problem [27]. The problem addressed in this research can easily be displayed as

a reduced version of the problem under the following conditions:

• only one time period is considered, i.e., |H| = 1 and |T | = 1;

• there is only one demand scenario, i.e., |Ω| = 1;

• electricity demand is fulfilled primarily by the PG (Zihtω & Vihtω = 0 ∀i ∈ I, h ∈

H, t ∈ T , ω ∈ Ω);

• there is no restriction on PG consumption and, consequently, no power shortage;

• charging price is not dependent on power usage in each time period (|R| = 1); and,

• only type 1 charging station is considered, i.e., |K| = 1. Then, no battery activities

are considered at charging stations, i.e., Hihtω, Sihtω, Pihtω & Bihtω = 0 ∀i ∈ I, h ∈

H, t ∈ T , ω ∈ Ω.

Therefore, it can be concluded that the problem investigated in this research is also

strongly NP-hard, and there is no guarantee of solving this problem optimally in polyno-
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mial time. This being the case, we focus on developing a Sample Average Approximation

(SAA) method enhanced with a Scenario Decomposition (SD) algorithm which is accom-

panied by a Rolling Horizon (RH) strategy.

4.3.1 Sample Average Approximation

Electricity demand of network cells (dihtω) differ significantly due to variable electric

vehicle flows at different cells on different time periods (fiht) as well as variable percent-

ages of electric vehicles charged under different scenarios on different time periods (ηhtω),

i.e., dihtω = ηhtωfiht ∀i ∈ I, h ∈ H, t ∈ T , ω ∈ Ω. Therefore, an extremely large number

of scenarios is required to investigate variations in demand. Since the research problem is

NP-hard, computational time increases significantly when a large set of scenarios is con-

sidered. To remedy this computational challenge, the SAA method is proposed so that

the expected electricity supply network cost of the stochastic problem is approximated by

a corresponding sample average function. The problem is solved by deterministic opti-

mization techniques under the sample average approximation. The procedure is repeated

with different samples until a stopping criterion (a pre-determined optimality gap) is satis-

fied. The SAA method has been implemented extensively to solve large-scale supply chain

network flow related problems including [20], [105], [106], [120], and others. Interested

readers are reffered to the studies performed by Kleywegt et al. [62] in relation to the

proof of convergence properties of SAA and Norkin et al. [86], [85], and Mak et al. [75]

in relation to the evaluation of developed statistical inference of SAA (e.g., validation and

error analysis, stopping rules).
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Electricity demand of network cells, dihtω, follows a normal distribution for each net-

work cell i at each time period h of year t. The SAA method generates set N of random

samples n with realizations of uncertain parameters (n ∈ N and |N | < |Ω|) to approxi-

mate the objective function value of the second-stage problem as follows:

E[Q(Y, ω)] :=
1

|N |
∑
n∈N

Q(Y, ωn)

where Q(Y, ωn) is a solution of the second-stage problem for a given value of Y under

scenario ωn. Problem [LEV3] is now approximated by the following SAA problem:

Minimize

{
YmN =

∑
i∈I

∑
k∈K

∑
t∈T

(
ψiktYikt

)
+

1

|N |
∑
n∈N

Q(Y, ωn)}

As the sample size increases, the optimal solution approximated by the above equation

converges with probability one to an optimal solution of the original problem [LEV3] [62].

By solving the SAA problem within an absolute optimality gap δ ≥ 0, the sample size |N |

is estimated to guarantee an ϵ-optimal solution to the true problem with probability at least

equal to (1− α) as follows:

|N | ≥ 3σ2
max

(ϵ− δ)2

(
|I||K||T |(log2)− logα

)

where ϵ > δ, α ∈ (0, 1), and σ2
max is a maximal variance of certain function differences

[62]. It is worth noting that choosing sample size |N | is a trade-off between the solu-

tion quality and required computational time. The above equation provides a conservative

sample size estimation for practical applications. In each iteration of the SAA method,
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valid statistical lower and upper bounds are provided for the original problem [LEV3] and

the process terminates when the gap between aforementioned bounds falls below a pre-

determined threshold value. The following steps briefly summarize the SAA method to

solve problem [LEV3].

Step 1: Generate set M of independent percentage scenarios of electric vehicles

charged in network cells, each of size |N |, i.e., {ηhtωωω1
m
, ηhtωωω2

m
, ..., η

htωωω
|N|
m
}, ∀m ∈

M,h ∈ H, t ∈ T . Then, solve the corresponding SAA for each generated sample

consisting of |N | realizations of independently and identically distributed (i.i.d.)

random scenarios. The optimal objective function value and the optimal solution are

denoted by YmN and ŶM , respectively. The optimal objective function value of the

mth replication is obtained as follows:

YmN =
∑
i∈I

∑
k∈K

∑
t∈T

(
ψiktYikt

)
+

1

|N |
∑
n∈N

Q(Y, ωn)

Step 2: Compute the average of all optimal objective function values obtained from

the SAA problems, ȲMN as follows:

ȲMN =
1

|M |
∑
m∈M

YmN

where, ȲMN provides a statistical lower bound on the optimal objective function value

for the original problem [LEV3] [86]. Since Y1N , Y
2
N , ..., Y

M
N generated samples are

independent, the corresponding variance of ȲMN , i.e., σ2
ȲMN

, is given by:
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σ2
ȲMN

=
1

(|M | − 1)(|M |)
∑
m∈M

(
YMN − ȲMN

)2
Step 3: Generate set N ′ including larger sample size (|N ′| ≫ |N |) to compute

the estimated optimal objective solution of the SAA method [62]. This estimator,

which is the upper bound of the optimal solution on the generated sample size |N ′|,

is obtained by one of the solutions of ŶM as follows:

YN ′(ŶM) =
∑
i∈I

∑
k∈K

∑
t∈T

(
ψiktYikt

)
+

1

|N ′|
∑
n∈N ′

Q(Y, ωn)

In each iteration, the estimator upper bound YN ′(ŶM) is updated. The variance of

this estimator upper bound is calculated as follows:

σ2
N ′(ŶM) =

1

(|N ′ − 1|)(|N ′|)
∑
n∈N ′

{∑
i∈I

∑
k∈K

∑
t∈T

(
ψiktYikt

)
+Q(ŶM , ω

n)− YN ′(ŶM)
}2

Step 4: Compute the SAA gap, Gap(N ,N ′), and the variance of this gap, σ2
Gap(N ,N′)

,

using the estimators determined in Steps 2 and 3.

Gap(N ,N ′)(Ỹ ) = YN ′(ŶM)− ȲMN

σ2
Gap(N ,N′)

= σ2
N ′(ŶM) + σ2

ȲMN

The confidence interval for the optimality gap is then calculated as follows:

YN ′(ŶM)− ȲMN + zα

{
σ2
N ′(ŶM) + σ2

ȲMN

}1/2
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with zα:= Φ−1(1 − α), where Φ(z) is the cumulative distribution function of the

standard normal distribution.

Step 5: Define the best solution among the solutions of ŶM(∀m ∈M) that represents

the lowest upper bound YN ′(ŶM).

4.3.2 Scenario Decomposition Algorithm

The SAA method requires to solve a two-stage stochastic programming model of |N |

scenarios. Depending upon the size of |I|, |H|, and |T |, the problem might still be con-

sidered computationally expensive to solve by SAA due to memory limit for solving N

scenarios of the problem. Since decomposition-based methods are used to divide a mster

problem into smaller and more manageable sub-problems [81, 2], each problem scenario of

SAA is solved with the help of a Scenario Decomposition (SD) algorithm accompanied by

the Lagrangian Decomposition (LD) scheme on the bases of novel Lagrangian multiplier

updating strategy. As the first rigorous algorithmic procedure, the SD algorithm has been

successfully applied for various application fields including production planning [131],

maintenance and operations sceheduling [13], cargo loading [113], and many mores. In

the following, the algorithmic steps of SD accompanied by LD are explained in detail.

The brevity of notation contributed in the [NEV] model is represented as follows:

z =Minimize
x,y

(
cx+

∑
n∈N

ρn(qyn)
)

(4.51)
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subject to;

Ax ≤ b (4.52)

Ux+ V yn ≤ fn ∀n ∈ N (4.53)

yn ∈ Y ∀n ∈ N (4.54)

x ∈ {0, 1}n (4.55)

yn ≥ 0 ∀n ∈ N (4.56)

where c and q on the objective function are n- and ρ-dimensional vectors, respectively;

b and f on the set of constraints (4.52) and (4.53) are m- and q-dimensional vectors, re-

spectively; and A, U , and V are matrices of m×n, q×n, and q×ρ dimensions, respectively.

cx represents the establishment and development costs of charging stations (i.e., first-

stage costs), while
∑

n∈N ρn(qyn) represents the hourly operational costs (i.e., second-

stage costs). The set of constraints Ax ≤ b represents constraints (4.2)-(4.4) in [NEV]

model, while the set of constraints Ux + V yn ≤ fn represents constraints (4.6)-(4.9),

(4.13), (4.14), (4.18), (4.21), (4.22), (4.26), and (4.27). Finally, set Y denotes the rest

of constraints in [NEV] model, i.e., (4.7), (4.10)-(4.12), (4.15)-(4.18), (4.19), (4.20), and

(4.23)-(4.25). Constraints (4.55) and (4.56) define binary restrictions and non-negativity

constraints domain, respectively.

It is worth noting that this problem has a special block-angular structure which can

be decomposed to a mster problem and several independent sub-problems. In relation to

multi-stage stochastic optimization problems, one of the most commonly techniques im-

plemented is LD [34, 18], which decomposes the problem based on time-stage. In the
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first step of the SD algorithm, a set of copies of the first-stage decision variable, i.e.,

{x1, x2, ..., x|N |} is generated and, consequently, part of the problem is re-written as fol-

lows:

z =Minimize
x,y

∑
n∈N

ρn(cxn + qyn) (4.57)

subject to;

Axn ≤ b ∀n ∈ N (4.58)

Uxn + V yn ≤ fn ∀n ∈ N (4.59)

yn ∈ Y ∀n ∈ N (4.60)

xn = xn+1 ∀n ∈ N\|N | (4.61)

Regarding relaxed constraints (4.61), Lagrangian relaxation is the problem of finding

xn and yn ∀n ∈ N as follows:

[SDEV] D(λ) = Minimize
x,y

∑
n∈N

ρn(cxn + qyn) +
∑
n∈N

λnθn (4.62)

subject to;

Axn ≤ b ∀n ∈ N (4.63)

Unx
n + Vny

n ≤ fn ∀n ∈ N (4.64)

yn ∈ Y ∀n ∈ N (4.65)

where θn = (xn − xn+1) ∀n ∈ N\|N | and λ is (|N | − 1)-dimensional vector. In

addition, Lagrangian dual is to find λ as follows:
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zLD = Maximize
λ

D(λ) (4.66)

Based on duality theory, z ≥ zLD [42], particularly for non-convex cases, z > zLD,

which implies the existance of a duality gap [18]. One important property of Lagrangian

dual problem (4.66) is that it is a convex non-smooth program, which splits into indepen-

dent sub-problems based on each scenario n. Each scenario sub-problem is presented as

follows:

Dn(λ) = Minimize
x,y

∑
n∈N

ρn(cxn + qyn) + hn(λ)xn (4.67)

subject to;

Axn ≤ b (4.68)

Unx
n + Vny

n ≤ fn (4.69)

yn ∈ Y (4.70)

where D(λ) =
∑

n∈N Dn(λ) and hn(λ) is given as follows:

hn(λ) =



λ1 if n = 1

−λ|N | if n = |N |

λn − λn−1 otherwise

(4.71)
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Although it is computationally convenient to solve, the decomposition framework is

not capable of solving the original full-space problem. However, it is widely known that

Lagrangian dual represents a relaxation of the original problem for any given set of La-

grange multipliers [42]. This being the case, it is focused on finding better multiplier sets,

i.e., multipliers yielding tighter relaxation to the original problem, that approximate the

solution of Lagrangian dual to the solution of the full-space problem.

In this study, we use the most common technique called sub-gradient for updating the

Lagrangian multipliers. This technique consists of an iterative method in which at a given

iteration r, with a current set of Lagrangian multipliers λr, a step is taken along the sub-

gradient of D(λ). Let consider dr the sub-gradient vector of dimension (|Ω| − 1) with

components given as dnr = xnr − xn+1,r ∀n ∈ N\|N |, where xnr ∀n ∈ N is the

solution of Lagrangian dual given λr. The Lagrange multipliers are updated using the

sub-gradient information as follows:

λn,r+1 = λnr + σr UB − LBr∑
n∈N (dnr)2

dnr ∀n ∈ N (4.72)

where UB is an approximation to the optimal value for z and LBr = D(λr). The term

σr ∈ (0, 2) is used to correct the error in the estimation of the true optimal value. The

updating procedure continues until any stopping criteria is met.

One possible feature of the proposed algorithm is the particular heuristic that uses in-

formation derived from the solution of the Lagrangean dual problem to derive a feasible

solution and a valid upper bound to the full-space problem. It should be noted that it is not
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computationally demanding to calculate an upper bound for the full-space problem, once

a first-stage solution is available. This is mainly due to the fact that for a fixed first-stage

solution, the full-space problem becomes decomposable in scenarios.

The heuristic is based in the following formation rule. Consider a given iteration r.

First, we calculate τ r as follows:

τ r =
∑
n∈N

P nxn,r −
∑
n∈N

P n(1− xn,r) (4.73)

If τ r > 0, the investment is selected to compose feasible solution. The time period

for the selected investment will be the earliest among the scenarios where the investment

was decided. We choose the earliest time period as the one to be implemented based on the

observation that the costs incurred by recourse actions are typically larger than the increase

in first-stage costs due to investing earlier in a given project. In addition to that, one might

notice that the existence of more logistic options allows the system to possibly reach more

efficient and less costly logistics, which yields economics of scale.

Since we are using a heuristic to generating solutions based on information that comes

from scenarios individually, it might be the case that the solution generated is not feasible

for the full-space problem. If this is the case, then we use integer cut to remove this

infeasible solution from the search space of the relaxed dual. Let X1 = {j|xj = 1} and

X1 = {j|xj = 0}. Then, we can write the integer cut as:

∑
j∈X0

xj +
∑
j∈X1

(1− xj) ≥ 1 (4.74)
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and add it to every scenario subproblem. We then solve again the Lagrangean relaxation

and proceed with algorithm execution. Pseudo-code of the basic Scenario Decomposition

Algorithm is provided in Algorithm 1.

4.3.3 Rolling Horizon Heuristic Strategy

The SD algorithm demonstrates high-computational capability in solving small- to

medium-size problems. However, SD is not capable of providing a reasonable solution
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for large-size problems. This motivates us to explore additional enhancement techniques

with different variants of Rolling Horizon Heuristic Strategy in order to improve the con-

vergence and stability of the SD algorithm, i.e., solving sub-problems faster.

It is worth noting that Algorithm 1 requires solving a deterministic and multi-time

period problem [SDEV] for |N | times, which is still considered as a challenging problem

from a solution standpoint. One way to tackle this problem is to split the planning horizon

(i.e., years and hours) into multiple parts and solve those parts sequentially until all are

investigated. This being the case, this study implements a Rolling Horizon (RH) heuristic

that decomposes problem [SDEV] into a series of smaller sub-problems comprising a few

consecutive hour-year combinations from the overall planning horizon. The algorithm

terminates when all hour-year combinations of the planning horizon are investigated. This

approach shows efficiency and good converging properties in solving problem instances

with relatively a long time horizon. Interested readers are referred to the studies performed

by Balasubramanian and Grossman [11], and Kostina et al. [63] to learn more about the

RH heuristic.

Three different variants of the RH heuristic are proposed in an attempt to find high-

quality solutions from solving problem [SDEV] in a reasonable amount of time. The first

variant of the RH heuristic, i.e., [RH1], decomposes problem [SDEV] on yearly basis,

while the second and third variants of the RH heuristic, i.e., [RH2] and [RH3], respec-

tively, decompose problem [SDEV] on hourly and a combination of hourly and yearly

basis, respectively. A pseudo-code of the basic Rolling Horizon heuristic is provided in

Algorithm 2.

178



www.manaraa.com

Algorithm 2: Rolling Horizon Heuristic
Input: Termination criteria: itermax, timemax, and ϵ;
Output: Upper bound z(xr);
Step 1: Initialize: r ← 1, tr0 ← 0, hr0 ← 0, M r, Qr ;
terminate← false;
while (terminate = false) do

Set:
• xn ∈ {0, 1} and yn ∈ Z+ for tr0 ≤ t ≤ tr0 +M r and hr0 ≤ h ≤ hr0 +Qr

• 0 ≤ xn ≤ 1 and yn ∈ R+ for t > tr0 +M r and h > hr0 +Qr

Solve the approximate subproblem [SDEV(r)] using CPLEX
if (t0 > |T |) then

terminate← true;
else

Fixing the value xn, yn for t < tr0 and h < hr0 ;
end
r ← r + 1;

end
return z(xr)

Let [SDEV(r)] be an approximate sub-problem of the RH algorithm at iteration r.

Define tr0 and hr0 as the starting time period for years and hours, respectively, whileM r and

Qr are the number of time periods of years and hours, respectively, for each sub-problem

r. In the RH heuristic, either a set of fixed or different values of M r and Qr is considered

across different iterations of the algorithm. For a particular scenario n, an approximate

sub-problem [SDEV(r)] is solved by setting the variables as follows:


xn ∈ {0, 1} & yn ∈ Z+ for tr0 ≤ t ≤ tr0 +M r & hr0 ≤ h ≤ hr0 +Qr

0 ≤ xn ≤ 1 & yn ∈ R+ for t > tr0 +M r & h > hr0 +Qr

After solving the sub-problem, the values of variables are fixed as xn,r = xn,r−1 &

yn,r = yn,r−1 for t < tr0 & h < hr0 and step size r is updated. It is worth noting that by

varying parameters tr0, h
r
0, M

r, and Qr, a number of different variants of the RH algorithm
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might be developed. Figures 4.2 through 4.4 provide an illustration of solving a three-year

and four-hour time period problem using three different variants of the RH heuristic. In

terms of preliminary experiments, [RH3] provides better computational results to solve

problem [SDEV(r)] efficiently.

Figure 4.2: Illustration of a rolling horizon strategy for [RH1]

4.4 Computational Study

This section focuses on solving model [LEV3] using hybrid Sample Average Approx-

imation based Scenario Decomposition algorithm to draw managerial insights obtained

from a real-life case study. This section is composed of three sub-sections. First, a brief

description of the data used to generate instances along with scenario generation are pro-

vided. Second, the efficiency and effectiveness of model [LEV3] and proposed algorithms
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Figure 4.3: Illustration of a rolling horizon strategy for [RH2]

Figure 4.4: Illustration of a rolling horizon strategy for [RH3]
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are evaluated in the electricity supply network problem. Finally, a case study, provided for

Washington, DC as a testing ground for the analysis, explores the potential connections of

limited power resources in power management to satisfy network demand. In addition, the

impact of demand variation, power grid disruption, and minimum power requirement to

establish charging stations on the overall electricity supply network design and cost are an-

alyzed. Managerial insights will be derived from this case study in the form of perspective

and understanding. The All numerical experiments are coded in GAMS 24.2.1 [39] on a

desktop computer equipped with an Intel Core i7 processor 3.50 GHz with 32 GB RAM.

The optimization solver used is ILOG CPLEX 12.6.

4.4.1 Data Description

Density of electricity demand in a network cell at a particular time period is determined

based on the number of major roads and, consequently, hourly projected flow of electric

vehicles on the network cell (fiht) [92] as well as the percentage of electric vehicles that

require to be charged under a demand scenario (ηhtω). Other factors including the density

of population, hospitals, commercial buildings, and colleges located nearby major roads

have a significant effect on projecting electric vehicle flow. The percentage of electric

vehicles charged in a particular time period (ηhtω) is set to 40%, while the discharging rate

(βht) is set to 5%.

The network, known as a grid network, is divided into n×m network cells, i.e., |I| =

n ×m, where each cell contributes an area of approximately 1.0 mi2. The data related to

cell-specific parameters are generated only for those cells that include a passing road(s);
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otherwise, the values of parameters related to a cell without road passing are set to zero.

Therefore, a network cell with a passing road(s) is considered as a candidate location to

establish a charging station. Long term investment decisions are made up to 10 years, i.e.,

|T | = [2, 10], while short term operational decisions are made up to 360 hours (15 days)

as a representative of each year, i.e., |H| = [12, 360].

The maximum limit of power line temperature before disruption (φmax
iht ) is set to 2000F

[4]. Since the power flow through transmission lines has a considerable impact on line

temperature, the maximum limit of power line electricity before disruption (gmax
iht ), which is

adopted from [31], is restricted in terms of φmax
iht . With respect to commercial and industrial

time-of-use (TOU) rate as well as the amount of electricity usage, unit electricity price of

charging stations is determined based on five segments of charging price, i.e., |R| = 5.

Each segment r represents a particular range of power availability with its own charging

price. Although a double exponential hazard function can plot utilized powers and charging

prices, for simplicity sake, an step function determines charging prices for pre-determined

segments of utilized power. Subsequently, hourly electricity price plan for the PG (c+rht) is

determined. In addition, hourly electricity price plan for V2G power (cv2ght ) is determined

with respect to [91, 104]. It is clear that the upper bound of the last segment of charging

price, i.e., UB|R|, is equal to the maximum limit of power line electricity, i.e., UB|R| =

gmax
iht .

Two types of fast electric vehicle charging stations are considered to establish on net-

work cells, i.e., |K| = 2. The construction cost of establisning type 1 and type 2 charging

stations is set to $50,000 [1] and $500,000 [40], respectively. Therefore, the annual estab-
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lishment cost of a charging station, which is established on year t, is determined in terms

of the ratio of the investment on planning horizon (|T |−t+1) to lifetime of the established

charging station of type k (LT k), i.e., ( |T |−t+1
LT 1

)×50, 000 and ( |T |−t+1
LT 2

)×500, 000. In addi-

tion, development cost is a percentage of annual investment cost, which is incurred mainly

from growing a current service and/or introducing a new service along with marketing

analysis, developmental engineering, and customer surveying.

The information on uses of solar radiation for target city is used to determine available

electricity obtained from solar panels during a day in each cell (briht). In addition, the size

of utilized solar panels for charging stations (arit) is assumed to be 100 m2. The minimum

power requirement to establish a charging station of type 1 (pcs1t)/type 2 (pcs2t) in a network

cell is 5/10 MW. The unit storage cost of a battery in a type 2 charging station (csht) is

set to 0.02 $/hr. The average unit power required to charge/obtained from discharge each

electric vehicle (λ/γ) is set to 35.6 kWh. Finally, we set the maximum available batteries

as well as the number of plug-in and plug-out at charging stations as ut = 40, qint = 10,

and qoutt = 10, respectively. It is worth noting that all costs and benefits are calculated and

then adjusted for inflation.

There is uncertainty on ηhtω so that it varies significantly from hour to hour due to dif-

ferent levels of remaining charge on electric vehicle batteries, car owner’s willingness to

stay at a charging station, and charging/discharging time. This requires a large set of sce-

narios for the estimation of hourly electricity demand. Based on a historical data of target

city, Monte Carlo simulation is implemented to generate a large number of scenarios with
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equal probabilities 1/|N | for ηhtω, where N is a set of sample scenarios. The generated

samples are independent and identically distributed (iid) random variables.

4.4.2 Experimental Results

Since Washington, DC is considered as one of strong-growing electric vehicle popu-

lations over other major metropolitan cities in US [92], it is chosen as a testing ground to

visualize and validate the modeling results. In addition, it has reputation as one of the na-

tion’s most environmentally conscious cities. The electricity supply network representation

along with demand distribution for Washington, DC is shown in Figure 4.5. The network

as a grid of size 12 × 11 is divided into 132 network cells, i.e., |I| = 132. Five-year as

long term investment decisions along with 24-hour in each year as a representative of short

term operational decisions are considered, i.e., |T | = 5 and |H| = 24. The information

on uses of solar radiation for Washington, DC in year 2010 is used to determine available

electricity obtained from solar panels during a day [83]. A historical data of Washington,

DC is considered into account that helps in predicting the future electric vehicle charg-

ing/discharging percentage. Finally, Monte Carlo simulation is implemented to generate a

large number of scenarios.

A sensitivity analysis is performed to determine how different values of an indepen-

dent parameter impact a particular dependent variable(s) as well as the overall electricity

supply network cost and design, under a given set of assumptions. Yearly decisions on

established charging stations determine the electricity supply network design. Therefore,

a considerable changes on critical factors definitely result in changes on network design.
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Figure 4.5: Network representation and geographical demand distribution of Washington

DC [6]

In particular, the impact of demand variation, power grid disruption, and minimum power

requirement to establish a charging station on the overall electricity supply network design

and cost are analyzed.

All sensitivity analyses are performed with respect to real life case study developed for

Washington, DC (base case study). Figure (4.6) shows five-year network design of long

term investment decisions in relation to the base case study. A noticeable expansion of

charging stations in Washington, DC is observed from year 2018-2022. Moving forward,

the number of established charging stations is increased due to increase in demand so that

the number of charging stations of each type is increased around 50% after five years. In

addition, the results indicate that most charging stations are established on the cells located

on downtown area of Washington, DC due to high density flow of electric vehicles on those

cells.
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In the following, the impact of critical parameters on the electricity supply network

cost and design are determined. We denote Erihtω =
(∑

(r∈R,i∈I,h∈H,ω∈Ω) ρωErihtω

)
/|Yt|

as a representative of the average electricity flow from the PG to charge electric vehicles

(not including batteries) at any type of charging stations established at cell i ∈ I on hour

h ∈ H of year t ∈ T under segment r ∈ R of charging price and demand scenario ω.

Moreover, |Yt| is considered as the number of charging stations of any type established at

the electricity supply network in a particular year t. Likewise, Zihtω and V ihtω are represen-

tatives of an average of hourly electricity power supplied by solar power and V2G power,

respectively, related to any type of charging stations established at any network cell. In

addition, Bihtω =
(∑

(i∈I,h∈H,ω∈Ω)Bihtω

)
/|Y′

t| is considered as a representative of the av-

erage number of batteries, which are hourly utilized at a type 2 charging station established

at any network cell. Likewise, H ihtω, Srihtω, and P ihtω are considered as representatives

of the average number of batteries, which are hourly stored, charged, and discharged at a

type 2 charging station established at any network cell, respectively. In addition, |Y′
t| is

considered as the number of type 2 charging stations established at the electricity supply

network in a particular year t.

4.4.2.1 Impact of Demand Variation

We first investigate the impact of demand variation or equivalently electric vehicle

charging percentage variation (ηhtω) and/or electric vehicle flow variation (fiht) on utiliza-

tion of diversified power resources and, consequently, electricity supply network design

and cost. Since variations on ηhtω and fiht are on the same direction, the impact of demand
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Figure 4.6: Electric vehicle charging station locations under base case scenario
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variations on different time periods are determined only by ηhtω with respect to the mean

(ηht) and variance (σ2
ht) of ηhtω in time period h of year t under different scenarios ω.

In this experiment, three different variation levels are generated for σ2
ht with respect to the

same ηht: (a) σ2
ht = 5%ηht as low demand variation level; (b) σ2

ht = 15%ηht as medium de-

mand variation level set to base case study; and (c) σ2
ht = 50%ηht as high demand variation

level. With respect to normality assumptions for ηhtω, Monte Carlo simulation techniques

are implemented to generate the scenarios for those different variation levels in which ηht

is independent for each time period and varies in the range (ηht ± σ2
ht) ∀h ∈ H, t ∈ T .

Figure 4.7 demonstrates the impact of ηhtω on utilization of diversified power resources

on a charging station. As evidenced from the results, demand variation has a direct rela-

tionship with utilized power resources so that any increase in ηhtω results in an increase on

utilization of a power resource(s), i.e., Erihtω, Zihtω, Vihtω, and λBihtω. In addition, a set

of time-dependent parameters including solar radiation availability, charging prices, and

electric vehicle flows critically affects the hourly operational decisions of utilized power

resources, particularly for high demand variation level. As shown by Figure 4.7(d), full-

charged batteries, i.e., λBihtω, satisfy main portion of electricity demands related to type

2 charging stations so that λBihtω ≤ (Grihtω − Erihtω), ∀r ∈ R, i ∈ I, h ∈ H, t ∈

T .ω ∈ Ω | Yi2t = 1 . Irrespective of battery demand of type 2 charging stations, elec-

tricity demands are primarily satisfied through the PG (Erihtω) and V2G power (V ihtω),

shown by sub-figures 4.7(a) and 4.7(b) of Figure 4.7, respectively, during solar radiation

unavailability, low-charging price hours, and low electric vehicle flows, i.e., 1.00 AM -

4.00 AM, 9.00 AM - 12.00 PM, and 9.00 PM - 12.00 AM. Alternatively, major part of
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electricity demands is satisfied first through solar energy (Zihtω), shown by Figure 4.7(c)

and, then primarily through V2G power (V ihtω) and the PG (Erihtω) during solar radiation

availability, high-charging prices, and more electric vehicle flows, i.e., 10:00 AM - 2:00

PM.

Figure 4.7: Impact of electric vehicle charging percentage variations on utilization of

power resources
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Demand variations have significant impact on battery activities of type 2 charging sta-

tions, i.e., the number of charged, discharged, and swapped batteries and, consequently,

the number of stored batteries at type 2 charging stations. Figure 4.8 demonstrates the

impact of ηhtω on battery related activities of a type 2 charging station on average. High

demand variation level leads to less discharged batteries, i.e., P ihtω, more charged batter-

ies, i.e., Srihtω, more utilized batteries to satisfy demands, Bihtω, and subsequently, more

stored batteries at type 2 charging stations, i.e., H ihtω. Contrary, low demand variation

level leads to more electricity flow to the PG to discharge batteries, γP ihtω, less electricity

flow from the PG to charge batteries, λSrihtω, less utilized batteries to satisfy demands and,

consequently, less inventory for full-charged batteries. It is worth noting that the rate of

changes on Srihtω and Pihtω depends on charging prices as well as the peak/sub-peak hours

of electricity demands.

In summary, variation on ηhtω highly impacts power resource utilization and, conse-

quently, the network design and cost. There are direct relationship between demand vari-

ation levels, the network design, and the network cost. Finally, the number of established

charging stations is either increased or not changed by high demand variation level and

vice versa.

4.4.2.2 Impact of Power Grid Disruption

A transmission line failure is occurred due to the line overheating as a result of power

flow loading over the line transmission capacity between the PG and a charging station.

Therefore, power shortage might occur to electricity supply network and, consequently,
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Figure 4.8: Impact of electric vehicle charging percentage variations on battery activities
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penalty cost is imposed to the network in spite of utilizing the maximum available capacity

of other resources. Penalty cost is considered due to either unmet demands or demands

satisfied by an external resource(s). Since the PG capacity, as the main electricity resource

of charging stations, has a critical effect on the amount of utilization of diversified power

resources in different time periods, the impact of power grid disruption for n consecutive

time periods (Grihtω = 0 ∀h, (h+1), ..., (h+n−1) ∈ H) on the electricity supply network

cost is investigated.

In order to show the impact of power grid disruption on utilized resources and the

network cost, model [NEV] is solved irrespective of power disruption constraints, i.e.,

model [NEV] without constraints (4.21) through (4.25), which is known as model [EV].

Then, after accounting risk aversion, power grid disruption is simulated for a particular cell

i as follows: power flow from the PG is set to zero during three consecutive time periods

(h+1), (h+2), and (h+3) at model [EV], i.e., Gri(h+1)tω = Gri(h+2)tω = Gri(h+3)tω = 0,

when utilized PG power is greater than the maximum allowable power in network cell i at

time period h of year t, i.e., Grihtω(1− π) > gmax
iht , or utilized PG powers are equal to the

maximum allowable powers in network cell i for two consecutive time periods (h− 1) and

h, i.e., Gri(h−1)tω(1− π) = gmax
i(h−1)t & Grihtω(1− π) = gmax

iht .

Figure 4.9(a) shows the utilization of power resources with respect to power disruption

management (disruption prevention model), while Figure 4.9(b) shows the utilization of

power resources irrespective of power disruption management (disrupted model). Part of

power shortage in the disrupted model is satisfied by other power resources including V2G

power and the RES. During power disruption, the utilization of V2G power reaches to its
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maximum availability compared to the disruption prevention model. In addition, there is

no sensible changes on the RES utilization at both models since it is utilized nearby to its

maximum capacity at the disruption prevention model. The remaining power shortage is

satisfied by an external resource(s), which is considered as penalty cost.

Since the PG is the main resource of charging stations, Figure 4.9(c) shows the uti-

lization of PG power and, consequently, power shortage at both disruption prevention and

disrupted models in order to follow the changes on annual network costs, shown by Figure

4.10. Although the PG utilization almost overlaps each other at both models, power disrup-

tion occurs frequently at the disrupted model, which leads to increase in power shortage,

while power shortage is remained on its reasonable level at the disruption prevention model

due to power disruption management. As a result, annual network costs are improved from

8% up to 16% when power disruption prevention strategy is used in electricity supply net-

work. In addition, total electricity supply network cost is reduced by 12% under power

disruption management, while even 1% improvement in the network cost of electricity

supply network is significant.

4.4.2.3 Impact of Minimum Power Requirement to Establish a Charging Station

This set of experiments study the impact of minimum power requirement to establish

a charging station (pcskt) on the overall network design and cost. Figure 4.11 illustrates the

impact of the percentage of change in pcskt on the number of established charging stations

in a particular year of planning horizon, i.e.,
∑

i∈I,k∈K Yikt, ∀t ∈ T . Decrease in pcskt, i.e,

a percentage change with negative number, is shown by dash-line, while increase in pcskt,
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Figure 4.9: Utilized power resources with and without power disruption management195
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Figure 4.10: Annual network costs with and without power disruption management

i.e, a percentage change with positive number, is shown by solid-line in Figure 4.11. There

is an inverse relationship between changes on minimum power requirement to establish a

charging station and the total number of established charging stations so that
∑

i∈I,k∈K Yikt

is either increased/decreased or not changed when pcskt decreases/increases.

Based on the impact of pcs1t and pcs2t on the network design, demonstrated by Figures

4.11a and 4.11b, respectively, the total number of established charging stations is more

sensitive to changes in pcs1t in comparison with changes in pcs2t. Figure 4.12 represents

the total network cost under different changes in pcs1t and pcs2t separately. Any decrease

in pcskt leads to establish more charging stations and, consequently, satisfy more demands.

Contrary, any increase in pcskt leads to establish less charging stations and, consequently,

satisfy less demands. On the other hand, more charging stations result in more network

cost due to annual establishment and development cost, while less charging stations result

in more network cost due to unsatisfied demands (i.e., power shortage). There is a trade-

off between the design (i.e., the number of established charging stations) and the cost of
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Figure 4.11: Impact of pcskt on established charging stations

electricity supply network, which are known as optimal design under optimal network

cost so that any changes on the optimal design (either positive or negative) increases the

network cost. The minimum network cost, shown by Figure 4.12, is obtained by 25% and

75% increase in pcs1t and pcs2t related to the base case study, respectively.
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Figure 4.12: Total network cost under different pcs1t and pcs2t
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4.4.3 Computational Performance of the Proposed Algorithms

The efficiency and effectiveness of the following algorithms are evaluated by solving

model [LEV3]: the basic SAA method proposed in Section 4.3.1; the SAA method pro-

posed in Section 4.3.2, where each sub-problem is solved using the SD algorithm; and, the

SAA method proposed in Sections 4.3.3, where each sub-problem is solved using the SD

algorithm on the basis of the LD scheme. To simplify the definition of proposed solution

approaches and obtained results, the following notations are provided.

• [CPLEX]: Model [LEV3] solved by CPLEX

• [SAAbasic]: The basic SAA method

• [SAASD]: The SAA method enhanced with the SD algorithm

• [SAASD/LD]: The SAA method enhanced with the SD algorithm on the basis of the

LD scheme

In relation to the research problem, there is no benchmark instances available in the

literature. Hence, a new set of problem instances are generated with respect to real life case

study and computational time required by [CPLEX]. Three sets of problem instances have

been generated for comparison purpose: small-, medium-, and large-size instances, where

the case study proposed on Washington, DC is considered as a medium-size problem. In

relation to short term operational decisions, the number of time periods in a year is 12 and

24 hours (around one day) for small-size instances, while it is 24 and 72 hours (1 and 3

days) as well as 168 and 360 hours (7 and 15 days) for medium- and large-size instances,
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respectively. Likewise, in relation to long term investment decisions, 2 and 5 years are

considered for small-size instances, while it is 5 and 8 years as well as 8 and 10 years for

medium- and large-size instances, respectively. All the other parameters are set based on

Section (4.4.1). Table 4.1 represents generated instances for each set of problems in terms

of the size of |I|, |H|, and |T |, where the deterministic equivalent for model [LEV3] is

indicated based on the number of variables and constraints for each generated instance.

Table 4.1: Problem size of the deterministic equivalent of the model based on the number
of variables and constraints

Size Instance |I| |H| |T | Variables Total
constraintsBinary Integer Continuous Total

Small

1 25 12 2 3,100 4,800 4,800 12,700 11,550
2 25 12 5 7,750 12,000 12,000 31,750 28,950
3 25 24 2 6,100 9,600 9,600 25,300 22,950
4 25 24 5 15,250 24,000 24,000 63,250 57,450
5 50 12 2 6,200 9,600 9,600 25,400 23,100
6 50 12 5 15,500 24,000 24,000 63,500 57,900
7 50 24 2 12,200 19,200 19,200 50,600 45,900
8 50 24 5 30,500 48,000 48,000 126,500 114,900
9 75 12 2 9,300 14,400 14,400 38,100 34,650
10 75 12 5 23,250 36,000 36,000 95,250 86,850
11 75 24 2 18,300 28,800 28,800 75,900 68,850
12 75 24 5 45,750 72,000 72,000 189,750 172,350

Medium

1 100 24 5 61,000 96,000 96,000 253,000 229,800
2 100 24 8 97,600 153,600 153,600 404,800 367,800
3 100 72 5 181,000 288,000 288,000 757,000 685,800
4 100 72 8 289,600 460,800 460,800 1,211,200 1,097,400
5 132 24 5 80,520 126,720 126,720 333,960 303,336
6 132 24 8 128,832 202,752 202,752 534,336 485,496
7 132 72 5 238,920 380,160 380,160 999,240 905,256
8 132 72 8 382,272 608,256 608,256 1,598,784 1,448,568
9 150 24 5 91,500 144,000 144,000 379,500 344,700
10 150 24 8 146,400 230,400 230,400 607,200 551,700
11 150 72 5 271,500 432,000 432,000 1,135,500 1,028,700
12 150 72 8 434,400 691,200 691,200 1,816,800 1,646,100

Large

1 175 168 8 1,178,800 1,881,600 1,881,600 4,942,000 4,474,050
2 175 168 10 1,473,500 2,352,000 2,352,000 6,177,500 5,592,650
3 175 360 8 2,522,800 4,032,000 4,032,000 10,586,800 9,581,250
4 175 360 10 3,153,500 5,040,000 5,040,000 13,233,500 11,976,650
5 200 168 8 1,347,200 2,150,400 2,150,400 5,648,000 5,113,200
6 200 168 10 1,684,000 2,688,000 2,688,000 7,060,000 6,391,600
7 200 360 8 2,883,200 4,608,000 4,608,000 12,099,200 10,950,000
8 200 360 10 3,604,000 5,760,000 5,760,000 15,124,000 13,687,600
9 225 168 8 1,515,600 2,419,200 2,419,200 6,354,000 5,752,350
10 225 168 10 1,894,500 3,024,000 3,024,000 7,942,500 7,190,550
11 225 360 8 3,243,600 5,184,000 5,184,000 13,611,600 12,318,750
12 225 360 10 4,054,500 6,480,000 6,480,000 17,014,500 15,398,550

A proposed solution approach is evaluated based upon the best lower bound obtained

from all solution approaches, i.e., LBBest. In other words, the percentage deviation (gap)

between the upper bound of ith solution approach (UBi) and LBBest is determined as
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∆fi(%) = (UBi−LBBest

LBBest
)× 100% ∀i ∈ S , where S = {[CPLEX], [SAAbasic], [SAASD],

[SAASD/LD]} and LBBest = Max{LBi} ∀i ∈ S . All proposed solution approaches are

terminated when at least one of the following criteria is satisfied: (a) the gap falls below

a threshold value ε, i.e., ∆fi(%) ≤ ε and/or (b) the maximum computational time limit,

CTmax, is reached. In this study, the stopping criteria are set as ε = 1% and CTmax =

3600 s.

Table 4.2 shows the comparative results obtained for proposed solution approaches in

terms of the gap and computational time. Scenario size is set to N = 1, 000 for [CPLEX],

while N = 20 and N ′ = 500 are set for samples with small- and large-size scenarios,

respectively, in relation to [SAAbasic], [SAASD], and [SAASD/LD]. In addition, replication

number M is set to 5 for all proposed algorithms. The boldface numbers under T (s)

column indicate the best computational time between proposed solution approaches when

∆fi(%) ≤ ε, ∃i ∈ S , while the boldface numbers under ∆f(%) column indicate the best

gap developed by solution approaches when T (s) = CTmax. The following results are

obtained from Table 4.2 under restricted computational time and pre-determined gap:

• In relation to small-size instances, all solution approaches present results close to-

gether based on the gap and computational time.

• The quality of the solutions obtained from [CPLEX] is significantly improved by

using [SAAbasic] for medium-size instances.

• The computational efficiency of the solutions obtained from [SAAbasic] is signifi-

cantly improved by using [SAASD], particularly for medium-size instances.
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• The quality and computational efficiency of the solutions obtained from [SAASD] is

significantly improved by using [SAASD/LD], particularly for large-size instances.

• [SAASD/LD] reduces overall gap reported by [CPLEX] significantly. The overall

gap reported by [SAASD/LD] is 9% of the gap reported by [CPLEX].

• [CPLEX] is capable of solving 13 out of 36 instances optimally within the pre-

specified computational time, while [SAASD/LD] is capable of solving all generated

instances optimally, except two large-size instances.

• A significant improvement in computational efficiency of [SAAbasic] is due to im-

plementing the enhancement technique, which is used to solve sub-problems of

[SAASD]. Likewise, the computational time reported by [SAASD/LD] is signifi-

cantly improved by incorporating the LD scheme into the SD algorithm in order to

solve sub-problems of [SAASD].

• [SAASD/LD] is capable of solving problems equal or less than halftime of other

solution approaches.

• [SAASD/LD] outperforms all other solution approaches and presents high-quality

solutions efficiently, particularly for large-size instances.

4.5 Conclusion and Future Studies

This paper proposes a novel disruption prevention optimization framework, which in-

tegrate both long-term planning decisions and short-term operational decisions to design

and manage electric vehicle charging stations on the electricity supply network, over a

pre-determined planning horizon and under a stochastic power demand. A transmission
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Table 4.2: Comparison of the results obtained from [CPLEX], [SAAbasic], [SAASD], and
[SAASD/LD]

Size [CPLEX] [SAAbasic] [SAASD ] [SAASD/LD ]
Case ∆f (%) T (s) ∆f (%) T (s) ∆f (%) T (s) ∆f (%) T (s)

Small

1 0.08 32.51 0.14 42.74 0.17 45.85 0.10 44.67
2 0.11 61.56 0.24 78.43 0.26 72.51 0.19 79.63
3 0.09 58.94 0.27 76.54 0.25 68.45 0.17 72.58
4 0.48 378.62 0.58 256.42 0.61 182.35 0.36 213.34
5 0.18 59.62 0.15 77.82 0.31 71.25 0.25 77.23
6 0.62 389.24 0.71 261.47 0.34 196.54 0.43 226.47
7 0.72 377.65 0.69 259.71 0.84 183.64 0.52 211.35
8 0.64 1,045.87 0.71 589.61 0.86 484.57 0.89 315.68
9 0.38 145.58 0.45 165.34 0.54 123.28 0.46 136.50

10 0.75 543.21 0.84 415.61 0.71 364.21 0.63 284.41
11 0.52 554.69 0.71 427.54 0.48 374.25 0.51 287.64
12 0.47 1,854.65 0.89 1,254.62 0.67 1,014.27 0.88 471.24

Average 0.42 458.51 0.53 325.49 0.50 265.10 0.45 201.73

Medium

1 0.92 28,145.21 0.94 8,745.62 0.54 4,753.21 0.84 2,654.88
2 11.52 CTmax 0.84 9,756.58 0.84 5,476.52 0.63 3,124.50
3 18.55 CTmax 0.67 16,543.88 0.71 8,542.65 0.82 4,563.87
4 20.61 CTmax 0.41 18,524.64 0.94 9,985.65 0.68 6,025.22
5 7.52 CTmax 0.88 9,012.54 0.65 5,012.35 0.56 2,964.55
6 8.63 CTmax 0.97 10,245.31 0.92 5,687.57 0.68 3,452.67
7 21.65 CTmax 0.77 18,635.74 0.57 9,745.64 0.47 5,047.64
8 OM - 4.62 CTmax 0.93 12,354.62 0.82 8,642.51
9 11.89 CTmax 0.79 9,825.74 0.87 5,478.61 0.78 3,254.87
10 15.33 CTmax 0.78 14,563.87 0.86 7,153.44 0.66 4,123.51
11 23.64 CTmax 0.81 19,524.30 0.65 10,632.55 0.89 6,214.51
12 OM - 12.54 CTmax 0.69 13,621.52 0.64 9,256.66

Average 14.03 35,214.52 2.09 17,281.52 0.76 8,203.69 0.71 4,943.78

Large

1 OM - 3.54 CTmax 0.92 17,523.64 0.64 9,726.54
2 OM - OM - 0.81 29,635.24 0.48 10,825.43
3 OM - OM - 10.35 CTmax 0.61 14,253.68
4 OM - OM - 12.65 CTmax 0.77 16,352.47
5 OM - OM - 0.89 28,635.41 0.94 10,235.44
6 OM - OM - 4.52 CTmax 0.59 12,635.71
7 OM - OM - 11.35 CTmax 0.82 15,234.95
8 OM - OM - OM - 1.23 CTmax

9 OM - OM - 2.35 CTmax 0.65 11,235.96
10 OM - OM - 7.65 CTmax 0.78 13,654.52
11 OM - OM - OM - 0.96 25,632.40
12 OM - OM - OM - 1.42 CTmax

Average - - 3.54 CTmax 5.72 32,421.59 0.82 17,648.93
Total average 7.22 17,836.52 2.05 1,7869.00 2.33 13,630.13 0.66 7,598.15
CTmax stands for maximum computational time, i.e., 36000(s).
OM stands for out of memory.

network might be disrupted due to power line overheating as a result of excessive power

flows in a prolonged time. To the best of our knowledge, this study is the first work that

considers power disruption prevention on a transmission network on the basis of a reliable

electricity supply network under demand uncertainty.

A reliable two-stage stochastic MINLP model [NEV] is formulated to determine the

type, location, and time of established charging stations in each year ( long-term planning

decisions) and manage power resource utilization in each hour (short-term operational de-

cisions) of the planning horizon with the aim of network cost minimization under electric-

ity demand uncertainty. The proposed model [NEV] prevents the evolution of excessive
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temperature on a power line under stochastic exogenous factors such as outside tempera-

ture and air velocity. Power resource management include the hourly operational decisions

of electricity flow from the PG, the RES usage, V2G power usage, as well as the number

of batteries charged, discharged (electricity flow to the PG), swapped, and stored. Al-

though model [NEV] is converted to a linear MILP model [LEV3] based on piecewise

McCromick relaxation technique of linearization, model [LEV3] is computationally very

challenging depending upon the number of network cells (|I|), set of time periods as a

combination of years (|T |) and hours (|H|), and set of scenarios (|ω|), which are deter-

mined by a decision maker(s). To alleviate these challenges and to solve industry-size

instances, we develop an Sample Average Approximation (SAA) method accompanied by

a Scenario Decomposition (SD) algorithm to solve generated sub-problems. The perfor-

mance of hybrid SAA method is improved by integrating Lagrangian Decomposition (LD)

scheme on the SD algorithm in order to solve sub-problems. Computational results indi-

cate that the SAA method accompanied by SD on the basis of LD is capable of producing

consistently high-quality solution to solve realistic large-size instances within reasonable

computational times.

Sensitivity analysis, performed on a case study based upon the road network of Wash-

ington, DC as a testing ground, provides insightful results about the impact of demand

variation, power grid disruption, and minimum power requirement to establish a charging

station on the overall electricity supply network cost and design. In addition, computa-

tional experiments reveal numerous managerial insights for managers to make operational

decisions at the optimum network cost. The following outcome of our data-driven analysis
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help decision makers to develop a future sustainable power management decision system

related to the electricity supply network with respect to the transmission network failure.

With respect to time-dependent parameters such as solar radiation availability, charging

prices, and electric vehicle flows, a decision maker is able to provide better hourly oper-

ational decisions of utilized power resources to reduce the network cost. A type 2 charg-

ing stations with more available batteries and battery activities is capable of reducing the

amount of fluctuation on electricity demand and, consequently, demand variations can be

under control. The overall electricity supply network cost is reduced more by managing

the permissible amount of power transaction among the PG and charging stations with re-

spect to charging prices, particularly through power disruption prevention management. In

addition, there are some hidden costs related to customer retention, operator unemploy-

ment, and network re-installation as a result of power disruption, which have indirectly

impacts the network cost. Finally, there is a trade-off between the number of established

charging stations and the electricity supply network cost at the optimum point for the min-

imum power requirement to establish charging stations so that any variation on the number

of established charging stations leads to increase in the network cost. In summary, the

management of time-dependent parameters, battery inventory of type 2 charging stations,

power transaction among the PG and charging stations, and minimum power requirement

to establish charging stations can considerably reduce the overall electricity supply net-

work cost, when the PG utilization is under control.

This study can be further extended in several research directions. Our study ignores

the impact of traffic congestion on the electricity supply network design and cost. One
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possible extension is the inclusion of the impact of EV congestion at charging stations on

a driver charging decision. Apart from this, a more realistic approach can track drivers’

behaviors in relation to the congestion at EV charging stations. A disrupted model along

with backup scenarios of demand satisfaction can be proposed in comparison with a power

disruption prevention model at the high risk aversion level. Furthermore, it is interesting

to consider the stochastic nature of other parameters into the model such as the RES.
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